

## **Evolution of low and intermediate mass stars**



STELLAR NEBULA

### Background

White dwarfs, WD are degenerate cores of  $< 8M_{\odot}$  stars. Metals sink in their *H/He* atmospheres fast compared to their lifetimes (*few days-1,000 years vs.* billions of years)

White dwarf pollution refers to the presence of metals in their atmospheres: up to **50% of all white dwarfs are polluted** [Koester+ 2014]

- Long WD lifetimes vs. short metal sinking timescales  $\rightarrow$  accretion is ongoing
- **Current pollution picture:** white dwarfs feed on disrupted asteroids, scattered inwards by distant massive planets (1<sup>st</sup> generation planetary systems). Scattering planets have to be more massive than ~ Neptune to send asteroids on star-grazing orbits, overcoming the effects of General Relativity [Pichierri+ 2017]
- The pollution picture is unlikely complete because
  - the detected pollution is volatile-poor → why not from comets?
  - giant planets are not frequent around A and F stars (white dwarf progenitors) [Vigan+ 2021] and were even less frequent in the past, when the progenitors were evolving, in lower-metallicity environments

#### Proposed pollution mechanism







... and later pollute WD's via collisional grinding or tidal disruption

| Table 1 | 1 |
|---------|---|
|---------|---|

| Quantity                           | Standard AGB values                   |
|------------------------------------|---------------------------------------|
| Mass loss rate, <i>İ</i> M         | 10 <sup>-6</sup> M <sub>☉</sub> /year |
| Stellar radius, <i>R</i> *         | $300 R_{\odot}$                       |
| Outflow velocity, v <sub>out</sub> | 10 km/s                               |
| Dust sublimation front, R          | 2 R*                                  |
| Condensation temperature, T        | 1,000 K                               |
| Stellar outflow composition        | 73% H, 25% He, 2% other               |
| Dust solid density, $ ho_{ m s}$   | 3 g/cc (silicates)                    |
| Velocity of large-scale turbulence | 2 km/s                                |

Habing & Olofsson 2004; Hofner & Olofsson 2018

# Polluting white dwarfs with 2<sup>nd</sup>-generation asteroids formed in AGB outflows

Valeria Kachmar & Konstantin Batygin Division of Geological and Planetary Sciences, California Institute of Technology; vkachmar@caltech.edu

PROTOSTAR 1st planetesimal formation

#### MAIN SEQUENCE

**RED GIANT** 

### Formation of asteroids in AGB outflows

Asymptotic Giant Branch, AGB is a post-main-sequence evolutionary stage of  $< 8M_{\odot}$ stars, when they lose most of their mass via turbulent outflows, becoming white dwarfs

• As seen in experiments and numerical simulations, **small eddies** tend to effectively **concentrate dust of specific sizes** in void spaces

Colors show gas vorticity, black points show dust grains



Credits: Phil Hopkins' research group





Dust is homogeneously suspended in gas at t = 0 After some time, the turbulence efficiently concentrates dust

• For Kolmogorov-like turbulence, spherically symmetric outflows and standard AGB values (Table 1), we can calculate this **specific grain size** *s*<sub>conc</sub> by equating dust aerodynamic (Epstein) stopping time to the eddy turnover time -

$$S_{conc} \sim \frac{\rho_{gas}}{\rho_s} HRe^{-0.5} \sim 0.01 - 0.1 \ \mu m$$

 $\rho_{\text{gas}}$  - local gas density  $\rho_{\rm s}$  - solid density of dust H – gas density scale height *Re* – Reynolds number

**Observations:** dust grains in AGB outflows are submicron [Ohnaka+ 2016]

• Kolmogorov prescription gives the **characteristic size of forming dust clumps** and their lifetimes - these values are ~ the eddy size and turnover timescale at Kolmogorov microscales

$$l_{clump} \sim HRe^{-3/4} \sim 100 \ km \qquad c_{s} - \log sp$$
  
$$\tau_{clump} \sim Hc_{s}^{-1}Re^{-0.5} \sim 1 \ hr$$

- For the gravitational collapse of the dust clumps, 2 requirement must be met (1) self-gravity overcomes the local stellar gravity and (2) turbulent diffusion. Simple calculations demonstrate that this is feasible: the maximal concentration factor of dust is  $c_{max} \sim 64 Re^{3/4} \sim 10^8$  [Desch & Cuzzi 2000], rising the local dust volumetric density to the local Roche density (~ $10^{-7}$  g/cm<sup>3</sup>) and suppressing turbulence (ratio of gas turbulent energy to dust self-gravity is  $\sim 1$ )
- This problem requires further investigation turbulent concentration can be a process that seeds planetesimal formation, when a separate process takes the system to gravitational instability
- One of such processes is the growth of dust grains via coagulation. The dustgrowth timescales for 0.01-0.1  $\mu m$  grains are short compared to the clump lifetimes

$$\tau_{grow} \sim (n \, \sigma \, \delta v)^{-1} \sim 0.5 - 5 \, s \ll \tau_{clump}$$

n – number density of dust grains  $\sigma$  – grains' cross-section  $\delta v$  – grains' velocity dispersion (eddy velocity at Kolmogorov microscale)

$$(\pi_{grow} \sim (n \ \sigma \ \delta v)^{-1} \sim 0.5 - 5 \ s \ll \tau_{clum}$$









peed of sound



ASYMPTOTIC **RED GIANT** 2nd planetesimal formation?



Growing, dust decouples from gas and can stay on bound orbits around the star. Adding the aerodynamic (Epstein) drag term to the 2-body-problem equations gives the grain size *s<sub>decouple</sub>* at which the decoupling occurs -

 $S_{decouple} \sim \frac{c_s}{m} \frac{\rho_{gas}}{\rho_{gas}} 2R \sim 0.1 \, mm$ 

To our knowledge, no observations focused on **sub-mm** - **cm dust around AGB stars** 

- **<u>Future work:</u>** hydrodynamical simulations of dust-gas mixtures around AGB stars with GIZMO, a multi-purpose fluid dynamics + gravity code [Hopkins 2015]. Recent simulations [Steinwandel+ 2022] demonstrated the gas-dust interactions in AGB outflows create regions with substantial concentration of dust
- If only 0.01% dust collapses into planetesimals, their cumulative mass would be worth of **10,000 main asteroid belts** (assuming  $1M_{\odot}$  is processed in AGB outflows)

## Dynamics of 2<sup>nd</sup>-generation planetesimals

**<u>AGB:</u>** planetesimals are **on bound** orbits vs. ejected to the interstellar 'Omuamua's medium, becoming (future work)

**WD:** planetesimal spherical halo/disk evolves collisionally, the resulting dust pollutes WD via **Poynting-Robertson** drag

N-body simulations of 2D WD systems in MERCURY [Chambers 1999] showed that collisions among planetesimals can occur during WD lifetimes



Collision rate = proxy for collisional dust production. Interestingly, the *nov* approach, often employed for similar problems, tends to overestimate the collision frequency

**Future work:** N-body simulations of 3D WD systems (WD spherical halo of planetesimals)



— 0.01μm \_\_\_\_\_0.1 μm \_\_\_\_\_ WD lifetime 9

Initial orbit [AU]

For perfectly absorbing grains and circular orbits, **the orbital decay timescale**  $\tau_{PR}$  is

 $a^2\pi$ 

• **Future work:** Touma+ 2019 investigated the dynamics of spherical halos of stars with black holes at the center, showing that stars can achieve high-eccentricity orbits in such systems - *similar mechanism at play in polluted WD systems?* 

 $v_{out}$  - outflow velocity

| - 2       | <i>a</i> - orbital radius |  |  |
|-----------|---------------------------|--|--|
| $tc^2m$   | c - speed of light        |  |  |
| $L\sigma$ | <i>m</i> – grain mass     |  |  |
|           | L – WD luminosity         |  |  |
|           | (blackbody at 10,000 K)   |  |  |
|           |                           |  |  |