WASP-69b's Escaping Atmosphere Confined to a Tail Extending at Least 7 Planet Radii

Dakotah Tyler Ph.D. Student UCLA Physics & Astronomy

Collaborators: Erik Petigura (Advisor), Antonija Oklopcic, Trevor David

> ExSoCal 2023 December 12, 2023

Observational Investigations of Mass-Loss for Close-In Exoplanets

- "Radius Gap" separating super-Earths and sub-Neptunes with few planets in between
- "Hot Neptune Desert" dearth of sub-Jovians on short orbits
- Clearly mass-loss plays an important role in shaping the distribution of close-in planets
 - Photoevaporation and Core-Cooling are two leading theories

Fulton et al. 2017

Helium 10830 Å as a Mass-Loss Tracer

Oklopcic & Hirata (2018)

Continuum Φ3 αz 2 1P 215 10 830 Å 2 ³S (triplet) Φ adiative transitions collisions with electrons collisions with H I atoms 1 ¹S (singlet) Energy separations not to scale.

 Metastable helium (He I 10830 Å) populated by recombination or collisional excitation

- EUV photons (hv = 10–100 eV) populate the 2³S state, FUV photons (hv = 5–10 eV) ionize and destroy it
- K stars provide the optimal EUV/FUV ratio ³

WASP-69 System

Relative Helium 10830 Å Absorption

In-Transit Helium:

- Absorption
 - **2.7 +/- 0.4%**
- Blueshift
 - -5.9 +/- 0.8 km/s

Post-Transit Helium:

- Absorption
 - **1.5 +/- 0.3%**
 - 0.5% CARMENES**
- Blueshift
 - **-23.3 +/- 1 km/s**
 - -10.7 km/s
 CARMENES**

Tyler et al. (2023)

Helium 10830 Å Light Curve

- He I 10830 Å Equivalent Width for time series
 - Time asymmetry in helium light curve
 - Baseline never recovered Excess absorption for 1.3 hours ~7.5 planet radii
 - Compare to Nortmann et al. return to baseline in 22 min ~2.2 planet radii
 - Maximal absorption depth is delayed relative to mid-transit
 - These effects show up in systems with extended atmospheric tails

Tyler et al. (2023)

3D Hydrodynamic Stellar-Planetary Wind Interaction Models

These tails are produced by strong stellar winds

Predicted Excess He I 10830 Å Absorption

Interpretation - Diagram to Scale

Figure 6. Transit chord and top down view of the WASP-69 system presented to scale. Left: Transit chord view from Keck. The four contact points, T_1 , T_2 , T_3 , and T_4 are represented with vertical black dashed lines and the absorbing He I is light blue. The red dashed line represents the final predicted position of the planet corresponding to the last observation in the spectral time series after traveling over 7 R_p (1.28 hrs) beyond the disk of the star from the perspective of the observer. Right: Top down view of the system. The He I tail can be seen accelerating towards the observer on the lower right of the panel.

Potential Variability within Observations

- Instrumental Variability
 - \circ CARMENES vs NIRSPEC vs WIRC
 - Resolution/Signal Strength
- Stellar Variability
 - Helium variability within the stellar atmosphere
 - Seems unlikely
 - Variability in the EUV/FUV stellar output
 - Changes amount of helium we can see
 - Varying stellar wind strength
 - Changes physical length of the tail

SNR Contributed Variations

Helium bandpass indicated: Nortmann et al. 2018 (red) This work (orange) Tyler et al. 2023 & data from Nortmann et al. 2018 10

Key Takeaways

- In-transit phase consistent with previous observations
 - Mass-loss rate ~1 Earth mass per Gyr

Key Takeaways

- In-transit phase consistent with previous observations
 - Mass-loss rate ~1 Earth mass per Gyr
- Post-transit data inconsistent with previous observations
 - 7.5 planet radii tail blueshifted at -23 km/s
 - *Differences can mostly be attributed to SNR highlights the value of observing objects with different instruments*

Key Takeaways

- In-transit phase consistent with previous observations
 - Mass-loss rate ~1 Earth mass per Gyr
- Post-transit data inconsistent with previous observations
 - 7.5 planet radii tail blueshifted at -23 km/s
 - *Differences can mostly be attributed to SNR highlights the value of observing objects with different instruments*
- Other sources of stellar variability:
 - Stellar XUV/FUV output variability
 - Varying stellar wind
 - Systems like these may provide testing ground for measuring stellar wind strength

Thank You!!

- In-transit phase consistent with previous observations
 - Mass-loss rate ~1 Earth mass per Gyr
- Post-transit data inconsistent with previous observations
 - 7.5 planet radii tail blueshifted at -23 km/s
 - *Differences can mostly be attributed to SNR highlights the value of observing objects with different instruments*
- Other sources of stellar variability:
 - Stellar XUV/FUV output variability
 - Varying stellar wind
 - Systems like these may provide testing ground for measuring stellar wind strength