

Planets excite normal modes of oscillation in host stars via tides.

Fully convective M-dwarfs host 2 main types of modes: $f_{2,2,+}$ İ_{2,0,1}

f-modes are like surface gravity waves.

i-modes are restored by the Coriolis force.

- The planet's tidal potential excites the above modes and many more.
- As the modes are damped, orbital angular momentum and energy are dissipated in the star

We assume a circular and aligned orbit between a planet (M') and its host star (M). We calculate the tidal dissipation *D* as follows:

$$D = \int_{V} \mu(\delta \mathbf{S}^* : \delta \mathbf{S}) \mathrm{d}V$$

 μ : dynamic viscosity δS : rate of strain tensor (involves mode eigenfunctions)

Convective turbulent viscosity is the relevant dissipative mechanism in M-dwarfs.

The imaginary part of the Love number $k_{2,2}^2$ governs orbital migration via tides. We invert the following:

$$D = \frac{5}{8\pi G} R |U_{2,2}|^2 \omega_m \text{Im}[k_{2,2}^2] \text{ dissipation}$$

$$\omega_m = 2(\Omega_o - \Omega_s): \text{ tidal forcing frequency}$$

$$\Omega_o: \text{ orbital frequency} \qquad U_{2,2}: \text{ tidal potential}$$

$$\Omega_s: \text{ stellar rotation rate} \quad R: \text{ stellar radius}$$

m: azimuthal wavenumber (here, m = 2)

Tidal Migration of Exoplanets Around M-dwarfs: **Frequency-dependent Tidal Dissipation** Samantha Wu (Caltech), Janosz Dewberry (CITA), Jim Fuller (Caltech)

Tidal dissipation is enhanced at resonant frequencies with modes.

The dissipation Im $|k_{2,2}^2|$

peaks at the rotating-frame frequency of the star's normal modes, $\omega_m = \omega_\alpha$.

Peaks are labeled by the relevant stellar mode that is resonantly excited by the planet's tidal potential.

As the star evolves, so does the spectrum of dissipation.

Model: $0.2 M_{\odot}$ M-dwarf in MESA from the pre-main sequence (PMS) to the main sequence (MS) until 3 Gyr. Throughout, the star remains fully convective.

Stellar evolution: • The star contracts from the PMS onto the MS. • The star's rotation period evolves via a saturated king law from Matt et al. (2015).

*f*4,2, – $f_{2,2,-}$ $f_{2,2,+}$ • *f*_{4,2,+} $i_{2,0,2}$ -10^{-2} $l_{2,0,1}$ $l_{2,1,1,-}$ $i_{2,2,1,-}$ $i_{2,3,0}$ $i_{2,2,0}$ **-**10⁻⁷ $i_{2,1,0}$ $\dot{i}_{2,2,1,+}$ *i*_{2,1,1,+}

The legend lists each stellar mode considered in this work: $f_{\ell,m,\pm}$ (f-modes) $l_{m,n_1,n_2,\pm}$ (i-modes)

 ℓ : spherical harmonic degree of star's gravitational potential n_1, n_2 : number of nodes in roughly horizontal and vertical directions, respectively \pm : prograde ($\omega_{\alpha} > 0$) vs. $i_{2,1,2,+}$ retrograde ($\omega_{\alpha} < 0$)

*Larger ℓ , n_1 , n_2 = shorter wavelength

encies trace enhanced dissipation. and planetary orbit (e.g. age, ω_m) planet encounters varied dissipation.

Earth-mass planets at $P_{\text{orb},0} \lesssim 1.5$ day and Jupitermass planets at $P_{\text{orb},0} \lesssim 2.5 \text{ day}$ experience inward and outward migration due to tidal dissipation.

Implications and future work: • Possible dearth of planets within 1-2 day around low-mass M-dwarfs • For higher mass stars, will encounter similar, but

augmented results due to gravito-inertial waves.

When $\omega_m = \omega_\alpha$ for the below mode, the dissipation increases by several OOM. The orbit maintains this for ≈ 100 s of Myr, causing rapid orbital migration. *I*_{2,1,0}

