

The Impact of Escaping Hydrogen Atmospheres on super-Earth Interiors James Rogers

11th December 2023

Solid core accretion

Gas accretion

Rogers, Owen & Schlichting (2023)

Boil-off

Photoevaporation + Core-powered mass-loss

Petigura, Rogers et al. (2022)

Sub-Neptunes

Super-Earths

Core Density

"Observe" Planets with Kepler

"Observe" Planets with Kepler

Hierarchical Inference Model

Mean Core

Mean Core

Mean Core

suggests that small planet interiors are slightly under-dense when compared to Earth

(A good example: TRAPPIST-1)

Why?

Can hydrogen *itself* explain this?

Rogers, Schlichting and Young (in prep.)

See Schlichting and Young (2021), Young et al. (2023)

Rogers, Schlichting and Young (in prep.)

Rogers, Schlichting and Young (in prep.)

Step 1: Use atmospheric evolution models to determine the H₂ atmospheric mass at the 'time of final global equilibrium (solid magma ocean surface)

Step 2: Find global chemical equilibrium state that produces this amount of H₂ atmospheric mass

Rogers, Schlichting and Young (in prep.)

Rogers, Schlichting and Young (in prep.)

Rogers, Schlichting and Young (in prep.)

What is left behind?

What is left behind?

Rogers, Schlichting and Young (in prep.)

What is left behind?

Some speculation...

Some speculation...

Conclusions

- Super-Earth interiors can be slightly under-dense when compared to Earth.
- As H₂ escapes, it is also sequestered into the interior, reducing overall bulk density.
- This produces abundant H₂O, and steam-dominated atmospheres.

Rogers, Schlichting and Young (in prep.)