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The tale of hydrogen… 

Solid core accretion Gas accretion Boil-off Photoevaporation 
+ 

Core-powered mass-loss

Rogers, Owen & Schlichting (2023)



The tale of hydrogen… 

Petigura, Rogers et al. (2022)
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The tale of hydrogen… 
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Earth Composition: 33% 
Iron, 67% Silicate

The tale of hydrogen… 

Rogers and Owen (2021)



The tale of hydrogen… 
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Iron, 67% SilicateRogers and Owen (2021)



suggests that small planet interiors are slightly under-dense when compared to Earth

The tale of hydrogen… 

(A good example: TRAPPIST-1)

Why?
Can hydrogen itself explain this?
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Can global chemical equilibrium explain under-dense super-Earths? 

Rogers, Schlichting and Young (in prep.) See Schlichting and Young (2021), Young et al. (2023)
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Can global chemical equilibrium explain under-dense super-Earths? 

Rogers, Schlichting and Young (in prep.)

Step 1:  Use atmospheric evolution models to determine 
the H2 atmospheric mass at the ‘time of final global 
equilibrium’ (solid magma ocean surface)

Step 2:  Find global chemical equilibrium state 
that produces this amount of H2 atmospheric 
mass
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What is left behind?
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Some speculation…

Rogers, Schlichting and Young (in prep.)
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Conclusions

Rogers, Schlichting and Young (in prep.)

• Super-Earth interiors can be slightly 
under-dense when compared to Earth. 

• As H2 escapes, it is also sequestered 
into the interior, reducing overall bulk 
density.  

• This produces abundant H2O, and 
steam-dominated atmospheres. 


