Seeing Double: **RVs Lagging Behind Magnetic Activity Indicators in HD 26965**

Jacob Luhn

Postdoctoral Scholar, UC Irvine

In collaboration with: Lily Zhao, Jared Siegel, Christian Gilbertson, Sam Halverson, Paul Robertson, the NEID science team, the EXPRES team

The Need for Extreme Precision Radial Velocities (EPRV)

Habitable Worlds Observatory

6-meter telescope observing in infrared, visible and ultraviolet bands

Designed to directly image exoplanets to look for signs of habitability

> Capable of a wide range of other general astrophysics

A vetted list of wellcharacterized planets will be critical for HWO success:

- 1. Improved efficiency over a blind direct imaging search
- 2. Precise masses are essential for distinguishing between **atmospheric** models (< 20%) & determining planet composition (<10%)

Batalha et al. (2019), Valencia et al. (2007)

Adapted from Anna John et al. (2023)

Adapted from Anna John et al. (2023)

RV discoveries at the sub-m/s level remain elusive

Adapted from Anna John et al. (2023)

RV discoveries at the sub-m/s level remain elusive

...even in the EPRV era

Adapted from Anna John et al. (2023)

RV discoveries at the sub-m/s level remain elusive

...even in the EPRV era

Earth-analog detections are no longer limited by instrumental precision, but instead by intrinsic stellar variability

A finding of the EPRV Working Group Report (Crass et al. 2021), echoed in Luhn et al. (2023)

The Challenge of Stellar Variability

Magnetic activity

 $i=60^{\circ}$

https://www.physics.uu.se

days/months/years 1–10+ m/s

DKIST, NSO/NSF/AURA

min 0.

Granulation

Oscillations

minutes-hours

0.3–1+ m/s

Victoria Antoci, asteroSTEP

minutes < 1 m/s

Overcoming Stellar Variability Granulation

Magnetic activity

Activity indicators

Bonfils+ (2007), Robertson+ (2014)

Gaussian processes

Haywood+ (2014), Rajpaul+ (2015), Jones+ (2017)

Line morphology Collier Cameron+ (2021), Gilbertson+ (2023)

Line-by-line RVs Dumusque (2018), Cretignier+ (2020), Wise+ (2022)

Binning observations Dumusque+ (2011)

Line morphology Collier Cameron+ (2021), Gilbertson+ (2023)

Oscillations

Exposure time averaging

Chaplin+ (2019)

see de Beurs+ (2023) for a good summary

The EXPRES Stellar Signals Project

A community data challenge to assess techniques for mitigating stellar variability

4 EXPRES targets

20+ mitigation techniques

Zhao et al. (2022)

The EXPRES Stellar Signals Project

Zhao et al. (2022)

The Case for High-fidelity Variability Data Sets

In the EPRV era, we have:

Requisite precision & stability to resolve sub-m/s variability

New probes of stellar variability (CCF morphology, LBL diagnostics)

Ultimately allow unprecedented views of how stellar variability affect spectra

The Case for High-fidelity Variability Data Sets ... beyond the Sun HARPS-N HARPS **EXPRES** NEID

Zhao et al. (2023)

Solar data have set the stage for these detailed analyses

We will want similar data sets for testing on other stars

MAGNETIC ACTIVITY ON ROTATION TIMESCALES IN HD 26965

NEID observations show clean activity signal...

NEID observations show clean activity signal...also seen in the RVs...

NEID observations show clean activity signal...also seen in the RVs...and matched by EXPRES!

NEID observations show clean activity signal...also seen in the RVs...and matched by EXPRES!

A correlated signal

RVs are correlated, but indicate a several day time lag

Traditional activity indicators trace global magnetic fields

Magnetic fields inhibit local convection & reduce the net convective blue-shift

Spots perturb rotational symmetry of disk, à la Rossiter-McLaughlin for transiting planets

RV_c is proportional to activity, and RV_{rot} proportional to its derivative

A simple spot model – multiple spots

More complex spot geometries lead to quasi-periodic behavior

A simple spot model — A GP approach

$H\alpha = a_{10}G(t)$

$RV = a_{00}G(t) + a_{01}G'(t)$ RV_c RV_{rot}

e.g., Rajpaul et al. (2015)

G(t) often chosen as a quasi-periodic GP kernel

A simple spot model – multiple spots

The relative contributions of RV_c and RV_{rot} introduce apparent time lags

A simple spot model — apparent time lags

The relative contributions of RV_c and RV_{rot} introduce apparent time lags

Fitting apparent time lags

Lagged GP model includes a time lag hyperparameter, as well as "jitter" terms for RV and activity

GP time lag: $\Delta t = 4.44 \text{ days}$

see Burrows et al. (submitted)

$RV = a_{00}G(t + \Delta t)$

$H\alpha = a_{10}G(t)$

Fitting apparent time lags

Lagged GP model

The lagged GP model appears to not capture the full story

Independent GPs

A simple spot model — A GP approach

$H\alpha = a_{10}G(t)$

$RV = a_{00}G(t) + a_{01}G'(t)$ RV_c RV_{rot}

e.g., Rajpaul et al. (2015)

A simple spot model — A GP approach

The simple spot model performs similar to lag model, leaving 85 cm/s of stellar "jitter"

Days after October 21, 2021

Can the RVs be explained by a lagged derivative model?

A time-lagged derivative?

Can the RVs be explained by a lagged derivative model?

$\Delta t = -6.4 \text{ days}$

What are the implications?

An opportunity for PRV instruments?

Can complex spot geometries/configurations be at play?

Possibly, we are *spinning up* STARRY, SOAP2.0

An astrophysical lag? Simple spot model assumes flux effect, magnetic effect, and RV are coupled

Magnetically bright (but photometrically quiet) features that precede dark spots?

Instantaneous derivative of activity time series predicts RV behavior 6.5 days later!

Summary

Activity–RV connections highlight need for high cadence & tricks beyond simple correlation metrics

Time lags between activity and RVs suggest a more complex spot

configuration or an astrophysical lag not accounted for in current models