# Direct Characterization of Exoplanet Atmospheres using Fourier Transform Spectroscopy

#### Jingwen Zhang<sup>1,\*</sup>, Michael Bottom<sup>1</sup> Eugene Serabyn<sup>2</sup>

University of Hawaii (IfA), 2. JPL
 \*NASA FINESST Fellow





#### Directly imaged exoplanets from ground based telescopes



<u>HR 8799 b, c, d, e</u> Mass: 5, 7, 7, 7 MJ a: 68, 38, 24, 14.5 AU Marois et al. 2008, 2010 Macintosh et al. 2015 Image: Keck/NIRC2

<u>51 Eridani b</u> Mass: 2-10 MJ *a* : 13 AU

Image: GPI

#### <u>beta Pictoris b</u>

Mass: 13 MJ *a* : 12 AU Lagrange et al. 2008 Image: GPI

#### *HIP 65426*

Mass: 9 MJ *a* : 90 AU Chauvin et al. 2017 Image: SPHERE



#### Directly imaged exoplanets from ground based telescopes



*HR 8799 b, c, d, e* Mass: 5, 7, 7, 7 MJ *a* : 68, 38, 24, 14.5 AU Marois et al. 2008, 2010 Image: Keck/NIRC2 <u>51 Eridani b</u> Mass: 2-10 MJ *a* : 13 AU

Macintosh et al. 2015 Image: GPI



### Astro 2020 recommends direct imaging from space



### Astro 2020 recommends direct imaging from space

![](_page_4_Figure_1.jpeg)

![](_page_4_Picture_3.jpeg)

# Integral Field Spectrograph (IFS)

![](_page_5_Figure_1.jpeg)

Rizzo et al. 2021

#### Visible

![](_page_6_Figure_2.jpeg)

Dark current values from Morrissey+2023

Zhang, Bottom, Serabyn, submitted

![](_page_7_Figure_1.jpeg)

Dark current values from Morrissey+2023

Zhang, Bottom, Serabyn, submitted

planet photon noise solar system zodi noise

![](_page_8_Figure_1.jpeg)

Dark current values from Morrissey+2023

Zhang, Bottom, Serabyn, submitted

planet photon noise solar system zodi noise

![](_page_9_Figure_1.jpeg)

Dark current values from Morrissey+2023

Zhang, Bottom, Serabyn, submitted

Readout noise values from Birkmann+2021

![](_page_10_Figure_1.jpeg)

Observed intensity

Interferogram

![](_page_10_Figure_4.jpeg)

![](_page_11_Figure_1.jpeg)

Observed intensity

Interferogram

![](_page_11_Figure_4.jpeg)

![](_page_12_Figure_1.jpeg)

Observed intensity

Interferogram

![](_page_12_Figure_4.jpeg)

Pros: No dispersion, use much fewer pixels, less detector noise
Cons: higher photon noise

![](_page_13_Figure_2.jpeg)

#### **Numerical Simulation**

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

#### **Numerical Simulation**

![](_page_15_Figure_1.jpeg)

#### Input spectra

![](_page_16_Figure_1.jpeg)

- Fiducial Target: an Earth twin orbiting a Sun-like star at 1 AU at 10 pc away
- Speckle: 10^-10 starlight
- •23 mag/arcsec<sup>2</sup> zodiacal light
- one 22 mag/arcsec<sup>2</sup> exozodiacal light

#### **Numerical Simulation**

![](_page_17_Figure_1.jpeg)

![](_page_18_Picture_0.jpeg)

# **Instrument Parameters**

### Diameter

6 m

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

VIS: 140, NIR:70

### Throughput

 $\tau_{tot} = \tau_{optical} * \tau_{coronagraph} * \tau_{QE}$ 

#### **Detector Noise**

 Current level: ROMAN and JWST
 Future level: HabEx and LUVOIR

#### **Numerical Simulation**

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

#### iFTS: comparing numerical SNR with analytical SNR

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

**Photon Noise** 

\* 
$$\Delta \lambda_{\text{ILS}} * T_{\text{exp}}$$

$$(2c_b)d\lambda + 2c_dN'_{pix}]T_{exp}$$

**Detector Noise** 

#### **Numerical Simulation**

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

#### **IFS: comparing numerical SNR with analytical SNR**

![](_page_22_Figure_1.jpeg)

 $SNR_{IFS} = \sqrt{[(c_p - \sqrt{(c_p - (c_p - \sqrt{(c_p - (c_p - \sqrt{(c_p - \sqrt{(c_p - \sqrt{(c_p - (c_p - \sqrt{(c_p - \sqrt{(c_p - (c_p - (c_p - (c_p - (c_p - (c_p - c_p - c_p - (c_p - c_p - c_p$ 

$$c_p * \Delta \lambda * T_{exp}$$

$$-2c_b)\Delta\lambda + 2c_dN_{pix}]T_{exp}$$

**Photon Noise** 

**Detector Noise** 

### Visible: an iFTS is limited by the photon noise

![](_page_23_Figure_1.jpeg)

Dark current values from Morrissey+2023

Zhang, Bottom, Serabyn, submitted

#### Visible iFTS

#### Visible: required exposure time to achieve SNR of 5

Target: an Earth analog from 10 pc

![](_page_24_Figure_2.jpeg)

Dark current values from Morrissey+2023 Zhang, Bottom, Serabyn, submitted

#### near-IR: the results depend on the instrument parameters

![](_page_25_Figure_1.jpeg)

Readout noise values from Birkmann+2021

![](_page_25_Figure_3.jpeg)

#### near-IR: required exposure time to achieve SNR of 5 Target: an Earth analog from 10 pc

![](_page_26_Figure_1.jpeg)

Zhang, Bottom, Serabyn, submitted

# Conclusion

- 1. In Optical, an iFTS is limited by photon noise
- the detector noise.
- 3. Our simulation highlights the need for better detectors.

# 2. In near-IR, an iFTS remains a promising option, determined by

# Thanks!

# Back Up

#### required exposure time to achieve SNR of 5 in different filters Target: an Earth analog from 10 pc

![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_1.jpeg)

# Backup!

# Backup!

![](_page_32_Figure_1.jpeg)

![](_page_32_Figure_2.jpeg)

$$n_{\rm pix} = n_h \times n_v$$

$$=4n_{\rm pix}\left(\frac{\lambda}{\lambda_0}\right)^2$$

$$\begin{array}{l} \cdots \\ \theta_{\text{pix}} = \frac{\lambda_0}{2D} \\ \cdots \\ N_{iFTS} = 2\left(\frac{\theta_{PSF}}{\theta_{pix}}\right)^2 = 8\left(\frac{\lambda}{\lambda_0}\right)^2 \end{array}$$

# Backup!

![](_page_33_Figure_1.jpeg)

![](_page_34_Picture_0.jpeg)

# **Instrument Parameters**

### Diameter

6 m

![](_page_34_Picture_4.jpeg)

![](_page_34_Picture_5.jpeg)

VIS: 140, NIR:70

### Throughput

 $\tau_{tot} = \tau_{optical} * \tau_{coronagraph} * \tau_{QE}$ 

#### **Detector Noise**

 Current level: ROMAN and JWST
 Future level: HabEx and LUVOIR

#### $\left[ (c_p + 2c_b) \Delta \lambda + 2c_d N_{pix} \right]$ T<sub>IFS</sub> $2\left[\int (c_{\rm p} + 2c_{\rm b})d\lambda + 2c_{\rm d}N'_{\rm pix}\right]$ T<sub>FTS</sub>

**Photon Noise** 

![](_page_35_Picture_3.jpeg)

**Detector Noise** 

#### $\left[ (c_p + 2c_b) \Delta \lambda + 2c_d N_{pix} \right]$ T<sub>IFS</sub> $2\left[\int (c_{\rm p} + 2c_{\rm b})d\lambda + 2c_{\rm d}N'_{\rm pix}\right]$ T<sub>FTS</sub>

**Photon Noise** 

![](_page_36_Picture_3.jpeg)

**Detector Noise**