Surveying hot Jupiter atmospheres with Keck/KPIC

Luke Finnerty (UCLA), M. Fitzgerald, G.A. Blake, J. Xuan, Y. Xin, J. Liberman, T. Schofield, N. Wallack, J.B. Ruffio, N. Jovanovic, D. Mawet, J. Wang, and the KPIC team

Orbit Semi-Major Axis [au]

Hot Jupiters in context

Formation pathways

Core Accretion

- Solid core becomes large enough to undergo runaway gas accretion
- Requires initial solid core
- Atmospheric composition depends on location with respect to snow lines, solid:gas accretion ratio
- Accretion and disk lifetime limit mass

Direct collapse

- Portion of protoplanetary disk becomes gravitationally unstable and collapses
- Requires instability conditions
- Composition similar to stellar
- Can produce very high masses very quickly

Formation pathways

Disk migration

- Giant planet migrates inwards due to interactions with disk
- Continues accreting during migration
- Aligned with host star
- Migration stops at/before inner edge of disk

High-eccentricity migration

- Giant planet migrates inwards due to scattering with another companion
- Disk dissipated prior to migration, no continued accretion
- Misaligned final orbits
- Tidal circularization requires very small periapsis

In/near-Situ

- Can massive planets form inside water ice line?
- Massive disks?
- Aligned orbits
- Beyond inner edge of disk (absent later migration)

ExSoCal - 12 December 2023

Luke Finnerty (UCLA)

Luke Finnerty (UCLA)

Luke Finnerty (UCLA)

Luke Finnerty (UCLA)

⁸

ExSoCal - 12 December 2023

Luke Finnerty (UCLA)

ExSoCal - 12 December 2023

Luke Finnerty (UCLA)

Only 1/10 hot Jupiters transit their host star

Only 1/200 planets at 1 AU transit their host star

Transiting planets are rare, and dimmer on average. How do we characterize the rest?

Hot Jupiters as binaries

 Hot Jupiters have star/planet contrasts of ~few x 10⁻⁴ in near-infrared

Hot Jupiters as binaries

- Hot Jupiters have star/planet contrasts of ~few x 10⁻⁴ in near-infrared
- High resolution spectrographs resolve many planet lines
- Planet lines shift in wavelength

Keck/KPIC

ExSoCal - 12 December 2023

Luke Finnerty (UCLA)

Hot Jupiters with Keck/KPIC

WASP-33 b

- Retrieved composition is high-C/O, high-metallicity
- WASP-189 b shows similar composition
- Retrieval improvements to address possible dissociation biases

HD 189733 b

Survey status

Luke Finnerty (UCLA)

Pre-2023A KPIC hot Jupiter detections

Luke Finnerty (UCLA)

24

KPIC transmission spectroscopy

ExSoCal - 12 December 2023

Luke Finnerty (UCLA)

New 2023A KPIC hot Jupiter detections

+1 more in progress

Luke Finnerty (UCLA)

200x Solar metallicity?

HD 149026 b 4 75 50 - 2 Δv_{sys} [km/s] 25 0 0 -25 -50 -75 -4 -100100 200 -200 300 0 K_p [km/s]

ExSoCal - 12 December 2023

Luke Finnerty (UCLA)

Significance $[\sigma]$

Near-real time quicklook

Luke Finnerty (UCLA)

Towards a population-level understanding

- Underlying distribution of C/O and metallicity constrain formation channel(s)
- Sample achievable by 2024B after 2023B shutdown
- Winds, photochemistry, ¹³C/¹²C also constrained
- Ongoing improvements to atmospheric retrieval frameworks are easing/speeding analysis

Funding for KPIC has been provided by the Heising-Simons Foundation (grants 2015-129, 2017-318, 2019-1312, 2023-4598), the Simons Foundation (through the Caltech Center for Comparative Planetary Evolution), and the NSF under grant AST-1611623