

Searching for Accreting Protoplanets with Kernel Phase Interferometry

Images generated by DALL-E 2 from the talk abstract

Alex Chaushev, Steph Sallum & CHARIS Team (UC Irvine)

ExSoCal 2023

Direct imaging targets a unique population of planets

Direct imaging is a powerful technique for the detection and characterisation of exoplanets:

- It provides access to planets at larger orbital separations (vs. transits and RV)

- Medium/high-resolution spectroscopy of directly imaged planets provides direct evidence of composition and formation history

- Imaging is the most likely way we will determine habitability of other worlds

HR 8799 - Jason Wang (Caltech)/Christian Marois (NRC Herzberg)

Most exoplanets do not *directly* inform us of the planet formation process

Accreting protoplanets allow us to observe planet formation in situ

The H-alpha detection map for PDS 70 b and PDS 70 c. (Haffert et. al. 2019 Nat Astro)

Fernandes et al. (2019)

10yr

Direct imaging searches are often limited by quasi-static speckles at inner working angles of \sim 1-3 λ /D...

GPI discovery image of 51 Eridani b (~30 pc)

Image credits: Gemini Observatory and J. Rameau (UdeM) and C. Marois NRC Herzberg

Direct imaging searches are often limited by quasi-static speckles at inner working angles of ~1-3 λ /D...

GPI discovery image of 51 Eridani b (~30 pc)

Image credits: Gemini Observatory and J. Rameau (UdeM) and C. Marois NRC Herzberg

Improvement in resolution offered by KPI vs 'traditional imaging' at 150 parsec

A simpler view of kernel phases

Kernel phase works for sub- λ /D!

A&A 646, A36 (2021)

Mid-infrared photometry of the T Tauri triple system with kernel phase interferometry $\!\!\!\!\!\!^\star$

J. Kammerer^{1,2}, M. Kasper¹, M. J. Ireland², R. Köhler³, R. Laugier⁴, F. Martinache⁴, R. Siebenmorgen¹, M. E. van den Ancker¹, R. van Boekel⁵, T. M. Herbst⁵, E. Pantin⁶, H.-U. Käufi¹, D. J. M. Petit dit de la Roche¹ and V. D. Ivanov¹

Received: 8 September 2020 Accepted: 25 November 2020

The Palomar kernel-phase experiment: testing kernel phase interferometry for ground-based astronomical observations @

Benjamin Pope ☎, Peter Tuthill ☎, Sasha Hinkley ☎, Michael J. Ireland, Alexandra Greenbaum, Alexey Latyshev, John D. Monnier, Frantz Martinache

OPEN ACCESS

NICMOS Kernel-phase Interferometry. II. Demographics of Nearby Brown Dwarfs

Samuel M. Factor¹ ^[b] and Adam L. Kraus¹ ^[b] Published 2023 February 24 • [©] 2023. The Author(s). Published by the American Astronomical Society. <u>The Astronomical Journal, Volume 165, Number 3</u> **Citation** Samuel M. Factor and Adam L. Kraus 2023 *AJ* **165** 130 **DOI** 10.3847/1538-3881/aca475

ARTICLES DANCING IN THE DARK: NEW BROWN DWARF BINARIES FROM KERNEL PHASE INTERFEROMETRY

Benjamin Pope¹, Frantz Martinache², and Peter Tuthill¹

Published 2013 April 2 \cdot © 2013. The American Astronomical Society. All rights reserved.

Monthly Notices of the Royal Astronomical Society of the Royal Comparison of the of the Royal Comparison

IFS' allow spectral calibration strategies and line-emission searches

R = 77.1 with 17 output channels

Results: Demonstrating Kernel Phase with SCExAO/CHARIS

The spectrum of HD 44927 B with respect to HD 44927 A recovered with kernel phase.

Chaushev et al. (2023), JATIS Chaushev et al. (2022), Proceedings of the SPIE

Characterisation of a spectral differential imaging (SDI) calibration for a simulated $Br-\gamma$ search

Results: New limits for MWC 758 and MWC 480

Setting upper limits on planet formation around MWC 758 and MWC 480 using a Br- γ accretion search and spectral differential KPI

Results: Application to a known planet candidate... ** <u>extremely tentative</u> detection at ~45mas **

Prior observations

Single companion fit (star + 1 point source)

Three companions iterative fit (star + 3 point sources) 150 Binary 1 Binary 2 Binary 3 100 50 0 . . -50 -100-150100 -150 -100 -50 Ó 50 150 300 200

Image reconstruction using gradient descent

Chaushev et al. (2024?), in prep pending Subaru...

Results: Pipeline Development for CHARIS and JWST kernel phase

Kernel phase image reconstruction using automatic differentiation and gradient descent for SCExAO/CHARIS, JWST/NIRISS and JWST/NIRCAM

CHARIS-KP: A public kernel phase pipeline for SCExAO/CHARIS

Chaushev et al. in prep for SPIE 2024

Future Work: A KPI Survey of Taurus?

A new near infrared wavefront sensor (PI: J. Lozi) is available on Subaru as of 2024A!

Limiting angular resolution and wavefront sensor magnitudes for KPI when observing young stars in Taurus

Future Work: JWST/NIRSPEC

JWST/NIRSPEC Kernel Phase

Can we do extremely high-angular resolution spectroscopy with KPI and JWST/NIRSPEC?

- Future direct imaging surveys such as GPI 2.0 and SPHERE+ will be detecting planets in the 5-10 AU range

 10^{-15}

Image from ERS Program 1328; Spectrum of brown dwarf VHS 1256b, Miles et. al.

Future Work: KPI Reconstruction

What is the sensitivity limit of KPI? Can we boost this with machine learning?

Automatic differentiation for better kernel phases

Deriving kernel phases from a numerical model of the telescope. Pope et al. (2019)

Deep neural networks for kernel phase systematic reconstruction

https://docs.hcipy.org/0.5.1/tutorials/ShackHartmannWFS/ShackHartmannWFS.html ²⁰

<u>Summary:</u> We can use interferometric data processing to search for 'close-in' protoplanets at 5-10 AU, where they are more abundant!

Thank you for listening!