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Most known planets were identified using photometry

5,550 confirmed planets

2,778 from Kepler
. 548 from K2
= 410 from TESS

plus >10,000 candidates
from photometry

EPIC 201572611 2014-06-10 19:31:58

Kepler pixel image
(credit: Kepler GO)



We need high resolution spectroscopy to learn more
about Kepler, K2 and TESS planets
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What are the demographic
trends in the population?
(e.g., radius gap, Fulton et
al. 2017)
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we need
spectroscopy to
answer these
science questions!



We need high resolution spectroscopy to learn more
about Kepler, K2 and TESS planets
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we need
spectroscopy to
answer these
science questions!

but this is
challenging :/



What if you didn’t need Keck or Gemini to characterize
planet hosts?

Gaia DR3 published spectra for 10,000 Kepler field stars and 37,000 TESS field stars!
(~6% of Kepler planet hosts ~20% of TESS planet hosts)
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We used the Cannon to train a data-driven spectroscopic model that
enables precise characterization of stars with Gaia DR3 spectra
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Our Gaia RVS model computes stellar properties with comparable
accuracy to ground-based surveys
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prediction from the California-Kepler Survey (CKS)



Our model also computes metrics to identify spectroscopic anomalies
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A fourth metric, szbinary helps to identify spectroscopic binaries by
comparing fits of single star and binary (i.e., composite) spectra
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A fourth metric, szbinary helps to identify spectroscopic binaries by
comparing fits of single star and binary (i.e., composite) spectra
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A fourth metric, szbinary helps to identify spectroscopic binaries by
comparing fits of single star and binary (i.e., composite) spectra
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Our spectral model metrics can be used to identify
stellar activity, binary stars, and evolved stars

main sequence single star Gaia spectrum

best-fit model

20 x residuals
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model produces good fit, metrics are reasonable



Our spectral model metrics can be used to identify
stellar activity, binary stars, and evolved stars

evolved star Gaia spectrum

best-fit model

20 x residuals
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model produces poor fit everywhere, ¥°is large and p training is small



Our spectral model metrics can be used to identify
stellar activity, binary stars, and evolved stars

Gaia spectrum
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model produces poor fit everywhere except activity-correlated lines,
X is large



Our spectral model metrics can be used to identify
stellar activity, binary stars, and evolved stars

Gaia spectrum
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model is significantly better fit by binary model, Ay’ binary is large



Summary

- most planets are discovered with photometry and
require spectroscopic follow-up to characterize

- Gaia DR3 released spectra for thousands of stars
in the Kepler and TESS fields (with more to come in
DRA4!)

- our data-driven spectral model computes stellar
properties with comparable precision to
ground-based surveys, and establishes metrics to
identify binaries, stellar activity, and evolved stars!

stay tuned for published model and planet host
properties! (Angelo et al 2024)
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Close binaries in Kepler are This can lead to:

mistaken for single stars
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A complete sample of binaries among planet hosts will allow us to
test theories of how binaries sculpt the exoplanet population

do binaries suppress
planet formation?

e.g., Kraus et al. 2016, Hirsch
etal. 2021

Y

do binaries sculpt
dynamically rich orbits?

e.g., Naoz et al. 2012, Becker
& Adams 2017 Li et al. 2014

G R

do binaries deplete planet
reservoirs?

e.g., Quintana et al. 2007,
Jang-Condell 2015



Previous searches for binaries among Kepler planet hosts
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see: Moe & Di Stefano 2017, Raghavan et al. 2010



Spectroscopic binaries are traditionally identified by their

characteristic double-lined spectra (e.g., Kolbl et al. 2015)

traditional method: identify 2 sets of spectral features
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Advances in spectrum modeling allow us to identify binaries with
overlapping spectral features, thereby increasing sensitivity

(e.qg., Burgasser et al. 2010, EI-Badry et al. 2018)
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We’ve also uncovered a number of stars with superimposed
Calcium emission + absorption

DR3 ID 5367424413685522688
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