

# Near-field Microlensing with Evryscope, the First Full-Sky, Gigapixel-Scale Survey

## **Overview and Microlensing Survey**



son with the SDSS DR7 photometric survey (red).



▲ Each cutout is 0.4 degrees on a side. Crowding does not affect at least 90% of stars above 20 degrees galactic latitude. These cutouts show 0.014% of a single Evryscope image.



### **Evryscope Instrument Specifications**



| Evryscope Instrument Overview |                             |
|-------------------------------|-----------------------------|
| Field of View                 | 8,000 square degrees.       |
| Cadence                       | 2 minutes                   |
| Pixels                        | 691 Megapixels (13"/pix)    |
| Aperture                      | 61mm                        |
| Duty cycle                    | 97% (whole-sky)             |
| Detector                      | 28.8 MPix CCDs              |
| Tracking                      | 2 hours at a time           |
| Photometric performance       |                             |
| Single-exposure               | g=16 (3-sigma)              |
| 1-hour bins                   | g~18                        |
| Sub-percent precision         | g < 12 every ~10<br>minutes |
| Sub-percent precision         | g < 15 every hour           |



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- MLO **EVR** South CTIO
- that of the CTIO Evryscope by 4000 square degrees, providing simultaneous two-color imaging over many-year timescales
- Expands total survey footprint to 12000 square degrees with 1.4 gigapixel resolution

## **Acknowledgements and Collaboration**

The Evryscopes are supported through NSF/ATI grant AST-1407589, NSF/ CAREER AST-1555175, and Research Corporation Scialog awards 23782 and 23822 and in collaboration with San Diego State University.





