# Interpreting the EROS observations towards the Galactic spiral arms

Noma Am

Marc Moniez, Sedighe Sajadian, Mansour Karami, Sohrab Rahvar, Reza Ansari

Sagittarius Arm

21st International Microlensing Conference ArXiv/1701.07006

-Sun Pasadena 2 february 2017

# Expérience de Recherche d'Objets Sombres



Wavelength (nm)

1m telescope in Chile Wide-field cameras **R** & **B** -> 32Mpix each • 7 years operation 50 Terabytes of data • 850,000 images processed ~77 10<sup>6</sup> stars measured 300 to 500 times EROS1 (1990-1994) EROS2 (1996-2003)

### **Spiral arms fields**

| <b>29 field</b>               | ls in 4 | zones aw | ay from Galactic center : 13x10 | <sup>6</sup> stars |
|-------------------------------|---------|----------|---------------------------------|--------------------|
| <b>Stars (10<sup>6</sup>)</b> | ) 3.0   | 2.4      | 5.2                             | 2.3                |
| Field (°) <sup>2</sup>        | 4.5     | 3.8      | 8.8                             | 4.0                |
| Image #                       | 2×268   | 2×277    | 2×454                           | 2×375              |





Specific difficulties compared with LMC/SMC/GC searches 1: Lenses belong to several structures

- Density, local (lens) IMF, kinematics



### **2: Source distances widely distributed !**

• Also strong and very variable interstellar absorption. For example: red giant clump not well defined in magnitude-color diagrams of spiral arms



-> Use concept of  $\tau$ (catalog), instead of  $\tau$ (distance)

# Spatial distribution of the 27 events found in 7 years



See Rahal et al. (EROS coll.) A&A500, 1027 (2009)

# **Ingredients for a full interpretation**

- The EROS observations: CMDs,  $\tau$ ,  $t_E$  distribution
  - CMD described with (mean stellar surface density, <color>)
  - $\tau$ , and  $t_E$  distribution described with ( $\tau$ , < $t_E$ >)
- Knowledge of the selection effects
  - Effective field
  - Stellar detection efficiency
  - Photometric uncertainties
  - Microlensing efficiency



- Galactic density models (shape and mass of each structure), built to fit all known observations
- Stellar luminosity distribution -> for source population
- Stellar mass distribution (IMF) -> for lens population
- **3D** absorption map -> ESSENTIAL

# **Deep understanding of the detector**



# **Simulation: Sources**

- Density models: Besançon / simple home-made
  - Disk(s)
  - Bar ( $\phi = 13^\circ$ )

### Local CMD built from debiased Hipparcos

- Use only objects within their completion distance (such that V<7.5)</li>
- Assume same CMD within the disk
- **3D** extinction map
  - Marshall et al. 2006Fast spatial variations





extinction@15Kpc

# **Simulation: Lenses**

- **Density models**: Besançon / simple home-made
  - Disk(s)
  - Bar ( $\phi = 13^\circ$ )
- **Kinematics** from the galactic models -> V<sub>T</sub>
  - disk orbital velocity
  - Maxwellian V in bar
  - Peculiar velocities have negligible impact
- IMF ->  $R_E$ 
  - Modified Chabrier  $(m_0 \# 0.2)$

 $\xi(\log m/M_{\odot}) = 0.093 \times exp\left[\frac{-(\log m/m_{0})^{2}}{2 \times (0.55)^{2}}\right], \ for \ m \le M_{\odot}$ 





## Fit to the observations

- Consider only stars with I < 18.4 to have the best control on detection efficiency
- Use simulation to connect 3-4 physical parameters  $(\phi_{bar}, M_{thick \ disk}, IMF, kinematic \ deviations...)$ with 16 observables: 4 x ( $\rho^*$ , <V-I>,  $\tau$ , <t<sub>E</sub>>)
- Minimize differences (simulation%observed) from linearised χ<sup>2</sup> with ∂(observable)/∂(parameter)

-> Necessary to adjust mapped extinctions by assuming 4 syst. & 1 stat. uncertainties (5 parameters)

# **Results: CMD**



### **Data**

13 ن\_2000

14

800

y Sct.

β Sct.

13 ن\_

14



# **Results: CMD**

#### Simulation







No need for massive spiral structure or thick disk of hidden compact objects

# γSct and the bar

- γ**Sct** l.o.s intercepts the bar
- Significant contribution expected from bar stars for τ
  - Clearly visible
  - Weak constraint on orientation, but large angle (~ 45°) ruled out

ρ[M<sub>e</sub>pc<sup>-3</sup>]

 -> Promising way to further contrain the bar (through more stat.)



# Distances of sources/lenses



--- extinction of the lensed sources (avg)

Lenses

Lensed sources



## **Results in numbers**

|                                   | Target          | $\theta$ Mus                   | $\gamma$ Nor      | $\gamma$ Sct      | $\beta$ Sct       |  |  |
|-----------------------------------|-----------------|--------------------------------|-------------------|-------------------|-------------------|--|--|
|                                   | measured        | $0.25 \pm .037$                | $0.23 \pm .035$   | $0.28 \pm .042$   | $0.34 \pm .051$   |  |  |
| $ ho_{*}^{I < 18.4} 	imes 10^{6}$ |                 | $\pm 7.3\%$ common systematics |                   |                   |                   |  |  |
| (stars / sq. deg.)                | simple model    | 0.22                           | 0.26              | 0.28              | 0.32              |  |  |
|                                   | Besançon        | 0.23                           | 0.26              | 0.30              | 0.33              |  |  |
|                                   | measured        | $1.95 \pm .15$                 | $1.86 \pm .15$    | $2.36 \pm .15$    | $2.20 \pm .15$    |  |  |
| $\overline{V-I}$ (mag.)           |                 | ±0.16 common systematics       |                   |                   |                   |  |  |
| -                                 | simple model    | 1.83                           | 2.02              | 2.35              | 2.13              |  |  |
|                                   | Besançon        | 1.94                           | 2.11              | 2.52              | 2.22              |  |  |
|                                   | measured        | 0.71                           | 0.78              | 0.71              | 0.75              |  |  |
| $\sigma_{V-I}$ (mag.)             | simple model    | 0.72                           | 0.73              | 0.83              | 0.74              |  |  |
|                                   | Besançon        | 0.73                           | 0.74              | 0.81              | 0.73              |  |  |
| $N_{event}(u_0 < .7)$             | observed        | 3                              | 10                | 6                 | 3                 |  |  |
|                                   |                 |                                |                   |                   |                   |  |  |
| $\overline{N}_{event}(u_0 < .7)$  | simple model    | 4.0                            | 8.6               | 3.6               | 2.2               |  |  |
|                                   | Besançon        | 4.0                            | 9.9               | 3.5               | 2.4               |  |  |
|                                   | measured        | $.67^{+.63}_{52}$              | $.49^{+.21}_{18}$ | $.72^{+.41}_{28}$ | $.30^{+.23}_{20}$ |  |  |
|                                   |                 |                                |                   |                   |                   |  |  |
| $	au 	imes 10^6$                  | simple model    | 0.23                           | 0.38              | 0.43              | 0.45              |  |  |
|                                   | Besançon        | 0.22                           | 0.34              | 0.44              | 0.40              |  |  |
|                                   | measured        | $97 \pm 47$                    | $57 \pm 10$       | $47 \pm 6$        | $59 \pm 6$        |  |  |
|                                   |                 |                                |                   |                   |                   |  |  |
| $\overline{t_E}$ (days)           | Besançon        | 68.5                           | 51.9              | 43.0              | 49.3              |  |  |
|                                   | simple model    | 80.5                           | 55.3              | 50.4              | 54.6              |  |  |
|                                   | with Kroupa IMF | 64                             | 43                | 38                | 42                |  |  |

# Conclusions

# The Besançon model and a simple model fit CMDs and microlensing observations towards the 4 spiral arms targets

- $\Rightarrow$  Only need to assume absorption systematics (by < 0.1mag)
- ⇒ No need for hidden compact objets in the Milky Way plane:  $M_{thick disk} < 5-7 \times 10^{10} M_{sol}$
- $\Rightarrow$  **Bar** : Inclination confirmed
- ⇒ Lens IMF : Krupa disfavoured, modified Chabrier favoured
- ⇒ Galactic dynamics: marginal sensitivity to proper motion parameters with available statistics.
- (Long term) perspectives:
  - Improve absorption map
  - Increase statistics + extend mapping (through dust) with IR survey
    - VVV at VISTA: K-survey within the galactic bulge and disk
    - OGLE IV, GAIA, WFIRST, LSST, Euclid

### Details in ArXiv/1701.07006

# Supplements



# The targets

- Magellanic Clouds => probe hidden matter in halo  $(\tau \sim 5.10^{-7})$
- Galactic center => probe ordinary stars as lenses in disk/bulge (τ ~ 2.10<sup>-6</sup>)

### **Spiral** arms

=> probe ordinary stars in disk, bar + hidden matter in thick disc ( $\tau \sim 5.10^{-7}$ )

Non-microlensing (SN, proper motion)

### ✓ Galactic Center: hundreds of microlensing events found

- 20 million stars monitored
- 5.6 million Red Giant stars
- 120 microlensing events on RG

#### ✓ Spiral arms

- 13.3 million stars monitored
- 27 microlensing events

✓ LMC

- 29.2 million stars monitored
- 5.5 million « bright » stars
- **0** microlensing event on bright stars

✓ SMC

- 4.2 million stars monitored
- 0.84 million « bright » stars
- 1 microlensing event on bright stars

# **Events found after 7 years of data taking**





# 7 years of data: Spiral arms

### **Spiral arms**

- 13 million stars
- 7 seasons -all data-

<Measurements> per object per week averaged measurements/week averaged measurements/weel γSct. β Sct. weeks since 1996 Jan 1. weeks since 1996 Jan 1. averaged measurements/week averaged measurements/week γNor. θ Mus. weeks since 1996 Jan 1. weeks since 1996 Jan 1.

| Direction                       | βScu | γScu | γNor | θMus |
|---------------------------------|------|------|------|------|
| Stars (x10 <sup>6</sup> )       | 3.0  | 2.38 | 5.24 | 2.28 |
| Effective field(°) <sup>2</sup> | 4.5  | 3.75 | 8.8  | 4.0  |
| Measurements<br>(per colour)    | 268  | 277  | 454  | 375  |

# **Event selection**

- After "standard" pre-filtering
  - 2nd fluctuation probability :
  - B and R fitted peak overlap :
  - Sampling :

 $log_{10}(P_2)/log_{10}(P_1)_{B,R} < 0.5$ > 40%

$$\Delta T_{\text{peak}} = \Delta T_{u<2} < \Delta t_{obs}$$
 - 600 days

$$|t_{max} - t_{closest meas.}| < 0.4 \ge \Delta T_{peak}$$

 $\Delta \chi^2_{\rm B} + \Delta \chi^2_{\rm R} > 60$ 

 $u_0 < 1$ 

 $\chi^2_{Base} / N_{dof} < 8$ 

- Goodness of (simple) ML fit:  $(\chi^2_{\text{monochromatic ML}} / N_{\text{dof}})_{B, R} < 1.8$
- Stability out of the peak :
- Improvement vs constant fit :
- Fitted impact parameter :
- $\Rightarrow$  27 candidates (incl. 1 uncertain -very long duration), 22 with  $u_0 < 0.7$

Small contamination (no SNs through dust)

# 27 candidates / 22 with $u_0 < 0.7$



gn 411 CCD 5 Quart k

- 2 candidates with parallax
- 4 with blending
- 2 Xallarap (A&A 351, 87-96, 1999)



# Xallarap event with extremely red source



# Stability of <t>directions measurement



# Statistical representativity of the events





Microlensed stars are redder An effect of the nonuniformity of source distance

✓ τ increases with distance
 ✓ I increases with distance
 BUT faint stars do not enter
 the catalog => <I> is ~ stable
 ✓ Absorption increases with
 distance => (V-I) increases

### Microlensed stars are redder



Check hypothesis with a synthetised « EROS-like » catalog:

- Hipparcos debiased local HR diagram
- density + absorption model
- EROS acceptance

### Interpretation of the optical depths [A&A 500, 1027 (2009)]



**τ** vs galactic longitude **@7kpc and b=-2.5°**