Jean-Philippe Beaulieu

Institut d'Astrophysique de Paris

Microlensing Mass Measurements Using Keck AO, Paving the Road for Euclid and WFIEST

Partners in crime : V Batista J.B. Marquette (IAP), A. Fukui (Okayama), D. Bennett & A. Bhattacharya (Goddard), P Fouqué (CFHT), A. Cole (UTAS), C. Henderson, Y. Shvartzvald, C. Beichman M. Ygouf (CALTECH), N. Koshimoto, T. Sumi (Osaka)

High angular resolutions: 3 examples

- Detection lens flux without resolving lens/source
- Resolving source & lens, measuring rel proper motion
- Hunting for a dark lens (free-floating candidate)

Getting physical parameters

Mass ratios & projected separations are well known

- Mass ratio $q = M_p/M_*$
- Planet/star separation in Einstein Ring radius units
- Timescale t_E

We need mass-distance relations to get physical parameters:

- Masse-distance relation from Einstein ring radius measurements Easy to get, when you have caustic crossings
- Masse-distance relation from Parallax measurements

Ground only is often problematic. Ideal with good-old-Spitzer/K2!

- Masse-distance relation from high angular resolution observations With KECK AO: it is cheap (15-30 min) to constraint light from lens. Resolving source/lens is more tricky (~60 mas)

Ogle 2014-BLG-124: ground- Spitzer parallax

Udalski et al. 2015, Yee et al. 2016

.15 .1 π_{Ε.Ε}

.05

.2

Well constraint Parallax, but no caustic crossing !

Source & lens are aligned

Source predicted $H=17.04 \pm 0.05$

Source +blend measured at H=15.95 \pm 0.03, So the blend is H=16.45 \pm 0.06

Additional flux detected ! We have a new mass-distance relation

If all excess light is the lens

Beaulieu et al. 2017

Host star mass: 0.91 \pm 0.05 M/ Planet mass: 0.65 \pm 0.06 M_{Jupiter} Distance D_L = 3.5 \pm 0.2 kpc

Is all the excess light coming from the lens ?

On going refined study by Virginie Batista.

Flux excess is an upper limit.

Within 100 mas, several scenarii. Which one is the more probable:

1/ Blend = lens
2/ Blend = lens + chance aligned star
3/ Blend = lens + companion to the lens (not affecting the light curve)
4/ Blend = lens + companion to the source (and any combination of 2, 3, 4)

Rule of thumb:

Bright sources, maybe some contamination by faint target (could be few % effect)

with faint sources and faint lenses, extra caution

OGLE-2005-BLG-169Lb: Resolving source & lens

With KECK, detecting the lens in 2013 Measuring proper motion

Batista et al., 2015

HST: 6.5 years aftr the event

Bennett et al., 2015, Aparna's talk

Detecting source & lens, measuring proper motion

Gould et al. 2006

Initial paper	
& preduction	k

Relative proper motion ~ 7-9 mas/yr Host star mass $0.5 \pm 0.3 M_{\odot}$ Planet mass ~ 13 $M_{jupiter}$ Distance $D_L=2.7 \pm 1.6$ kpc Projected separation ~ 2.7 AU

HST Bennett et al. 2015

 $\mu_{rel_l} = 7.39 \pm 0.2 \text{ mas/yr}$ $\mu_{rel_b} = 1.33 \pm 0.23 \text{ mas/yr}$

Host star mass: $0.69 \pm 0.02 \text{ M}_{\odot}$ Planet mass: $14.1 \pm 0.9 \text{ M}_{\text{earth}}$ Distance D_L = $4.1 \pm 0.4 \text{ kpc}$ Projected separation $3.5 \pm 0.3 \text{ AU}$ KECK Batista et al. 2015

 $\mu_{rel_l} = 7.28 \pm 0.12 \text{ mas/yr}$ $\mu_{rel_b} = 1.54 \pm 0.12 \text{ mas/yr}$

Host star mass: $0.65 \pm 0.05 M_{\odot}$ Planet mass: $13.2 \pm 1.5 M_{earth}$ Distance D_L = 4.0 ± 0.4 kpc Projected separation 3.4 ± 0.3 AU

In agreement with Gould et al., 2006, but more accurate results.

MACHO-95-BLG-3, a free-floating planet?

Figure 2. The dual-color light curve of event 95-BLG-3 during the 1995 Galactic bulge season and a close-up of the light curve showing the lens fit.

MACHO-95-BLG-3

20 arcsec

3 companions, 0.6, 0.4, 0.3 arcsec

With Marie Ygouf, CALTECH

Free-floating planet ? Probably not...

Lessons / Work to do KECK, SUBARU, Euclid, WFIRST

- It is numerology, so have 2 people reducing same datasets.
- Unresolved source/lens: Procedure to estimate contamination by blends, companions to source & to lens (AO, Euclid, WFIRST)
- Centroid shift due to source/lens: Procedure to estimate contamination by blends, companions to source & to lens (AO, Euclid, WFIRST)
- Refining AO strategy to measure source-lens centroid shifts.
- Feedback from direct detection people

Euclid Microlensing survey Beaulieu, Kerins, et al.

3 fields observed every 17 min in H, every 12 hours in VIS, J, Y. Mini-survey during commissionning (24h), then 4 x 1 months survey

- Measuring cold Earth abundance and mass function
 ~35 planets / month (5 Earth / month, 15 Neptune / month)
- Getting constraints on free floating planets
 ~15 free-floating planets / month
- EUCLID/ML complements parameter space probed by RV and KEPLER

Measuring the cold planet mass function below 1 Earth mass.

 Possibility of simultaneous EUCLID-WFIRST in the extended mission 2026+ (parallax between EUCLID and WFIRST to measure masses of Earth mass free floaters)

Penny et al., 2013 MNRAS 434, 2

The ESA Euclid space mission

Courtesy: S. Pottinger, M. Cropper and the VIS team

Payload and Mechanism Control Unit (PMCU)

VIS

Lucid

Table 1: VIS and weak lensing channel characteristics

Spectral Band	550 – 900 nm
System Point Spread Function size	\leq 0.18 arcsec full width half maximum at 800 nm
System PSF ellipticity	≤15% using a quadrupole definition
Field of View	>0.5 deg ²
CCD pixel sampling	0.1 arcsec
Detector cosmetics including cosmic rays	≤3% of bad pixels per exposure
Linearity post calibration	≤0.01%
Distortion post calibration	≤0.005% on a scale of 4 arcmin
Sensitivity	$m_{\text{AB}}{\geq}24.5$ at $10\sigmain3$ exposures for galaxy size 0.3 arcsec
Straylight	≤20% of the Zodiacal light background at Ecliptic Poles
Survey area	15000 deg ² over a nominal mission with 85% efficiency
Mission duration	6 years including commissioning
Shear systematic bias allocation	additive $\sigma_{sys} \le 2 \ge 10^{-4}$; multiplicative $\le 2 \ge 10^{-3}$

Ciuppei et al 2010.3FIE

NISP

Courtesy: T. Maciaszek and the NISP team

- FoV: 0.55 deg²
- Mass : 159 kg
- Telemetry: < 290 Gbt/day
- Size: 1m x 0.5 m x 0.5 m
- 16 2kx2K H2GR detectors
- 0.3 arcsec pixel on sky
- Limiting mag, wide survey AB : 24 (5 σ)

• 3 Filters:

- Y (950-1192nm)
- J (1192, 1544nm)
- H (1544, 2000nm)
- 4 grisms:
- •1B (920 1300) , 1 orientation 0°
- •3R (1250 1850), 3 orientations 0°, 90°, 180°

Maciaszek et al 2016:SPIE

Euclid Calibration Workshop ESAC, 20 SEP 2016

