First Year of pyLIMA: progress and plans

21st International Microlensing Conference

Etienne Bachelet Valerio Bozza Rachel Street Martin Norbury

Outline

• What can we do with pyLIMA?

• How does it work?

• Some results

• Future plans and expected release

NOW, pyLIMA can handle these microlensing models :

Point Source Point Lens (Paczynski 1986)

Finite Source Point Lens (Yoo 2004, Cassan 2006)

Double Source Point Lens (Hwang 2013)

Uniform Source Point Lens (Bozza 2010)

http://www.fisica.unisa.it/GravitationAstrophysics/VBBinaryLensing.htm

You can use those to : simulate realistic observations (Earth and Space based)

Some second-order effects are implemented:

Annual/Terrestrial/Space parallaxes (Gould 2004, Calchi-Novati 2015)

Alternative parameters

 $\rho \rightarrow \log(\rho.t_{E})$

Orbital motion

Xallarap

Several fitting methods implemented :

Levenberg-Marquardt (scipy)

Differential Evolution (scipy)

MCMC (emcee)

How it works ?

Architecture based on python

Uses standard python libraries (numpy, scipy, astropy, matplotlib ...)

You can plug your fancy library from other language with SWIG

Version control, open access, collaborations

Join us :

https://github.com/ebachelet/pyLIMA

How it works ?

Stability control

Python provides a framework for systematic and routine unit testing

Travis runs these automatically online, issues warnings

Gmail -	□ ⁻ C Plus ⁻	1–50 sur 3 072 < >	\$ -
NOUVEAU MESSAGE	🗌 📩 📄 Rachel Street	Iridium flare tomorrow - Hi all, Returning to a conversation we had in the car: there will be an Iridium flare visible tomorrow e	28 janv.
Boîte de réception (97)	🗌 📩 🕞 Travis Cl	Fixed: ebachelet/pyLIMA#106 (master - 00c0959) - ebachelet / pyLIMA (master) Build #106 was fixe View Build P	27 janv.
Messages suivis	🗌 📩 🕞 Travis Cl	Fixed: ebachelet/pyLIMA#105 (master - b8c0481) - ebachelet / pyLIMA (master) Build #105 was fixe View Build P	27 janv.
Messages envoyés	MOA transient alert	MOA 2017-BLG-002 - MOA_ID: 2017-BLG-002 Internal ID: gb22-R-1-1852 Discovery Date: 2017-01-28T01:37:04 UT RA:	27 janv.
Brouillons (60)	MOA transient alert (2)	MOA 2017-BLG-001 - MOA_ID: 2017-BLG-001 Internal ID: gb2-R-2-19629 Discovery Date: 2017-01-27T23:15:22 UT RA: 1	27 janv.

To help users, we provide :

Examples, using

IP[y]: IPython

Documentation, using

K2 campaign

OB160813

K2 campaign OGLE-2016-BLG-0813

Event detection in LCO data

OB130665/MB13300 : a microlensed RRLyrae

pyLIMA is flexible enough, so you can write whatever model you need.

Here, we have a RR Lyrae microlensing events.

OB130665/MB13300 : a microlensed RRLyrae

OB130665/MB13300

OB130665/MB13300 : a microlensed RRLyrae

16.40 16.45 16.50 16.55 Observed Magnitude 19.92 19.92 16.70 16.75 16.85 5400 6000 6200 5600 5800 Observation time (days)

Lomb-Scargle Periodogram (period=0.282491328941 days)

OB130665/MB13300 : a microlensed RRLyrae

The RR Lyrae is the source because flux variations are independent of the magnification

Period ~ 0.28 RR c Lyrae

Potential parallax measurement

Sagan Workshop

Sagan Workshop

Release v1.0 very soon, stay tuned!

Optimizing binary fitting

Working on some events

Do you need something ? Let's talk!