Analysis of the Single Lensing Event OGLE-2015-BLG-1482

Sun-Ju Chung

Korea Astronomy and Space Science Institute (KASI)

February 2th, 2017

OGLE-2015-BLG-1482

source trajectories

4-fold parallax degeneracy

• For the simultaneous observation from 2 observatories, there is a well-known 4-fold degeneracy for the microns parallax vector (π_E)

• If $u_{\mathbf{0},\text{sat}} \simeq \mathbf{0}$, then $(\mathbf{0}, +u_{\mathbf{0},\oplus})$ and $(\mathbf{0}, -u_{\mathbf{0},\oplus})$

the 4-fold degeneracy reduces to the 2-fold degeneracy

Best-fit lensing parameters

	Fit parameters								
Solutions	$\chi^2/{ m dof}$	$t_0(\mathrm{HJD'})$	u_0	$t_{\rm E}~{\rm (days)}$	$ ho(10^{-2})$	$\pi_{\mathrm{E,N}}$	$\pi_{\mathrm{E,E}}$	$f_{s,ogle}$	$f_{b,ogle}$
(+,0)	8360.63/8367 8360.92/8367	$\begin{array}{c} 7207.893 \pm 0.001 \\ 7207.893 \pm 0.001 \end{array}$	$\begin{array}{c} 0.160 \pm 0.002 \\ 0.165 \pm 0.002 \end{array}$	$\begin{array}{c} 4.265 \pm 0.021 \\ 4.258 \pm 0.022 \end{array}$	$\begin{array}{c} 5.55 \pm 1.10 \\ 9.16 \pm 0.60 \end{array}$	$\begin{array}{c} -0.1288 \pm 0.0169 \\ -0.1342 \pm 0.0189 \end{array}$	$\begin{array}{c} 0.0346 \pm 0.0016 \\ 0.0349 \pm 0.0017 \end{array}$	$\begin{array}{c} 1.790 \pm 0.015 \\ 1.794 \pm 0.015 \end{array}$	$\begin{array}{c} -0.004 \pm 0.015 \\ -0.009 \pm 0.015 \end{array}$
(-,0)	8360.95/8367 8361.15/8367	7207.893 ± 0.001 7207.893 ± 0.001	$\begin{array}{c} -0.160 \pm 0.002 \\ -0.164 \pm 0.002 \end{array}$	$\begin{array}{c} 4.265 \pm 0.021 \\ 4.262 \pm 0.022 \end{array}$	5.55 ± 1.08 9.10 ± 0.59	$\begin{array}{c} 0.1309 \pm 0.0163 \\ 0.1342 \pm 0.0188 \end{array}$	$\begin{array}{c} 0.0159 \pm 0.0017 \\ 0.0155 \pm 0.0018 \end{array}$	$\begin{array}{c} 1.790 \pm 0.015 \\ 1.791 \pm 0.015 \end{array}$	$\begin{array}{c} -0.005 \pm 0.015 \\ -0.005 \pm 0.015 \end{array}$

Table 1 Best-fit parameters.

Note. -(+,0) indicates $u_{0,\oplus} > 0$ and $u_{0,\text{sat}} \simeq 0$. HJD' is HJD -2450000.

not 2-fold degeneracy, but 4-fold degeneracy.

Appearance of the ρ degeneracy !!!

The biggest $\Delta \chi^2$ between the four solutions is $\Delta \chi^2 = 0.5$ (severe)

Source properties

offset between the clump and the source :

 $[\Delta(V-I), \Delta I] = [0.07, 0.22]$

 offset between the instrumental magnitudes of OGLE and KMTNet I_{kmt} - I_{ogle} = 0.045

• source magnitude from the best-fit model :

*I*_s = 17.37

• dereddened color and magnitude of the source

 $[(V-I), I]_{s,0} = [1.13, 14.76]$

Adopting $(V-K_{)s,0} = 2.61$ (Bessel & Brett 1988)

source angular radius :

 $heta_{\star} = \mathbf{5.79} \pm \mathbf{0.39} \,\, \mu \mathbf{as}$

K-type giant

Lens properties

• Einstein ring radius :

$$\theta_{\rm E} = \theta_{\star}/\rho = \begin{cases} 0.104 \pm 0.022 \text{ mas} & \text{for } \rho \simeq 0.06\\ 0.063 \pm 0.006 \text{ mas} & \text{for } \rho \simeq 0.09. \end{cases}$$

• relative proper motion :

$$\mu_{\rm rel} = \theta_{\rm E}/t_{\rm E} = \begin{cases} 8.96 \pm 1.88 \text{ mas yr}^{-1} & \text{for } \rho \simeq 0.06\\ 5.48 \pm 0.48 \text{ mas yr}^{-1} & \text{for } \rho \simeq 0.09 \end{cases}$$

• lens mass :

$$M = \frac{\theta_{\rm E}}{\kappa \pi_{\rm E}} = \begin{cases} 0.096 \pm 0.023 \ M_{\odot} & \text{for } \rho \simeq 0.06 & \text{(M dwarf)} \\ 0.055 \pm 0.009 \ M_{\odot} & \text{for } \rho \simeq 0.09. & \text{(brown dwarf)} \end{cases}$$

• lens-source relative parallax :

$$\pi_{\rm rel} = \theta_{\rm E} \pi_{\rm E} = \begin{cases} 0.014 \pm 0.003 \text{ mas} & \text{for } \rho \simeq 0.06 \\ 0.009 \pm 0.001 \text{ mas} & \text{for } \rho \simeq 0.09 \end{cases}$$

Iens-source distance :

$$D_{\rm LS} \equiv D_{\rm S} - D_{\rm L} = \frac{\pi_{\rm rel}}{\rm AU} D_{\rm S} D_{\rm L} \simeq \begin{cases} 0.80 \pm 0.19 \text{ kpc} & \text{for } \rho \simeq 0.06 \\ 0.54 \pm 0.08 \text{ kpc} & \text{for } \rho \simeq 0.09 \end{cases}$$

Lens properties

• Einstein ring radius :

$$\theta_{\rm E} = \theta_{\star} / \rho = \begin{cases} 0.104 \pm 0.022 \text{ mas} & \text{for } \rho \simeq 0.06 \\ 0.063 \pm 0.006 \text{ mas} & \text{for } \rho \simeq 0.09. \end{cases}$$

• relative proper motion :

 $6.8.06 \pm 1.88 \text{ mas } \text{ur}^{-1} \text{ for } a \approx 0.06$ the first isolated low-mass bulge object !!!

• lens mass : $M = \frac{\theta_{\rm E}}{\kappa \pi_{\rm E}} = \begin{cases} 0.096 \pm 0.023 \ M_{\odot} & \text{for } \rho \simeq 0.06 & \text{(M dwarf)} \\ 0.055 \pm 0.009 \ M_{\odot} & \text{for } \rho \simeq 0.09 & \text{(brown dwarf)} \end{cases}$

Iens-source relative parallax :

$$\pi_{\rm rel} = \theta_{\rm E} \pi_{\rm E} = \begin{cases} 0.014 \pm 0.003 \text{ mas} & \text{for } \rho \simeq 0.06 \\ 0.009 \pm 0.001 \text{ mas} & \text{for } \rho \simeq 0.09 \end{cases}$$

Iens-source distance :

$$D_{\rm LS} \equiv D_{\rm S} - D_{\rm L} = \frac{\pi_{\rm rel}}{\rm AU} D_{\rm S} D_{\rm L} \simeq \begin{cases} 0.80 \pm 0.19 \text{ kpc} & \text{for } \rho \simeq 0.06 \\ 0.54 \pm 0.08 \text{ kpc} & \text{for } \rho \simeq 0.09 \end{cases}$$

Future resolution of the ρ degeneracy using AO

- Requirements of direct lens imaging :
 - I. lens is luminous.
 - 2. lens is sufficiently far from the source to be separately resolved.

Future resolution of the ρ degeneracy using AO

- Requirements of direct lens imaging :
 - I. lens is luminous.
 - 2. lens is sufficiently far from the source to be separately resolved.
 - BD solution : fail
 - faint M dwarf solution : possible (lens-source separation > 2.5FWHM)

Future resolution of the ρ degeneracy using AO

• Requirements of direct lens imaging :

• GMTIFS of GMT : ~0.01" in NIR • GMT first light : maybe 2025

time with 2.5FWHM = $2015 + 2.5*(10 \text{ mas}/9 \text{ mas yr}^{-1}) = 2018$ for GMT

So, we can confirm the M dwarf solution in 2025 using GMT.

If the M dwarf doesn't appear, the BD solution is correct.

Origin of the ρ degeneracy

• The fundamental reason for this degeneracy is that the finite-source effect is seen only in a single data point from *Spitzer*

• Finite-source effect function

$$B(z) \equiv \frac{A_{\rm obs}}{A_{\rm ps}} \simeq A_{\rm obs} u. \qquad (z \equiv u/\rho)$$

 A_{ps} : point-source magnification $A_{ps} \simeq 1/u$ for high-mag events

- A_{obs} : observed finite-source magnification
- At the nearest point to the peak for Spitzer

 $B(z) = A_{\rm obs}u = 19.14 \times 0.06 = 1.15$

It has two different z, z=0.64 and z=1.12

there are two ρ values $\rho = 0.094$ for z=0.64 $\rho = 0.054$ for z=1.12

ρ degeneracy of OGLE-2015-BLG-0763 (Zhu et al. 2016)

This implies that although for events in which the finite-source effect is seen only in *Spitzer* the ρ degeneracy can occur frequently due to low observation cadence of the *Spitzer*, it can be resolved by a few data points near the peak.

• typical source radius crossing time :
$$t_{\star} \equiv \frac{\theta_{\star}}{\mu_{\rm rel}} = 45 \min\left(\frac{\theta_{\star}}{0.6 \ \mu as}\right) \left(\frac{\mu_{\rm rel}}{7 \ \max \ {\rm yr}^{-1}}\right)^{-1}$$

• typical source radius crossing time :
$$t_{\star} \equiv \frac{\theta_{\star}}{\mu_{rel}} = 45 \min\left(\frac{\theta_{\star}}{0.6 \ \mu as}\right) \left(\frac{\mu_{rel}}{7 \ mas \ yr^{-1}}\right)^{-1}$$

• OGLE-IV & KMTNET :
• I~3 fields : < 20 min cadence
• the majority of fields : > I hr cadence
• the majority of fields : > I hr cadence

• typical source radius crossing time :
$$t_{\star} \equiv \frac{\theta_{\star}}{\mu_{rel}} = 45 \min\left(\frac{\theta_{\star}}{0.6 \ \mu as}\right) \left(\frac{\mu_{rel}}{7 \ mas \ yr^{-1}}\right)^{-1}$$

• OGLE-IV & KMTNET :
• the majority of fields : < 20 min cadence
• the majority of fields : > 1 hr cadence

but

for typical events with I hr cadence,

we can obtain 2 more data points before and after crossing the source, except one source-crossing data point

• typical source radius crossing time :
$$t_{\star} \equiv \frac{\theta_{\star}}{\mu_{rel}} = 45 \min\left(\frac{\theta_{\star}}{0.6 \ \mu as}\right) \left(\frac{\mu_{rel}}{7 \ mas \ yr^{-1}}\right)^{-1}$$

• OGLE-IV & KMTNET :
• the majority of fields : < 20 min cadence
• the majority of fields : > 1 hr cadence

for typical events with 1 hr cadence,

but

we can obtain 2 more data points before and after crossing the source, except one source-crossing data point

• KMTNET : about a half of fields (\leq I hr cadence)

ρ degeneracy will be resolved in most of KMTNet events

• typical source radius crossing time :
$$t_{\star} \equiv \frac{\theta_{\star}}{\mu_{rel}} = 45 \min\left(\frac{\theta_{\star}}{0.6 \ \mu as}\right) \left(\frac{\mu_{rel}}{7 \ mas \ yr^{-1}}\right)^{-1}$$

• OGLE-IV & KMTNET :
• I~3 fields : < 20 min cadence
• the majority of fields : > I hr cadence
• the majority of fields : > I hr cadence

for typical events with 1 hr cadence,

but

we can obtain 2 more data points before and after crossing the source, except one source-crossing data point

Summary

- We found that the lens of OGLE-2015-BLG-1482 is a very low-mass star with the mass $0.10 \pm 0.02 M_{\odot}$ or a brown dwarf with the mass $55 \pm 9 M_J$, which are respectively located at $D_{\rm LS} = 0.80 \pm 0.19$ kpc and $D_{\rm LS} = 0.54 \pm 0.08$ kpc and thus it is the first isolated low-mass object located in the Galactic bulge
- The fundamental reason for the ρ degeneracy is that the finite-source effect is seen only in a single data point from *Spitzer*.
- Considering that the ρ degeneracy can be resolved only by high cadence observations around the peak and the Spitzer cadence is typically ~ I day⁻¹, we expect that events for which the finite-source effect is seen only in the Spitzer data may frequently exhibit this ρ degeneracy.
- Since the relative lens-source proper motion for M dwarf is $\mu_{rel} = 9.0 \pm 1.9 \text{ mas/yr}$, while for BD it is $\mu_{rel} = 5.5 \pm 0.5 \text{ mas/yr}$, the ρ degeneracy can be resolved within ~ 10 yrs from direct lens imaging by using next-generation instruments with high spatial resolution.

Thank you for your attention !!!