The Impact of Binary Companions on Planet Survival Adam Kraus (UT-Austin)

Trent Dupuy (Gemini Obs.), Michael Ireland (ANU), Andrew Mann (Columbia), Daniel Huber (Univ. of Hawaii)

See: Kraus et al. (2016), Dupuy et al. (2016)

Obstacles to Planet Formation

KOIs Are (Mostly) Unbiased For Multiplicity

Due to low spatial resolution, Kepler is (mostly) indifferent to multiplicity status – though I'll discuss caveats.

Also see observing campaigns or analyses by Howell, Adams, Lillo-Box, Horch, Dressing, Wang, Law, Kolbl, Gilliland, Everett, Teske, Baranec, Atkinson, Ziegler, Furlan, Hirsch, Deacon

Multiplicity of KOIs with Keck/NIRC2

Sample: 430 KOIs, ~100 2nd epochs

x6

Detections and Detection Limits

Detections: Observed vs Predicted

Red = Observed, Blue = Simulation of known binary occurrence rate with Malmquist bias + detection limits included

Toy model: Suppress Close Binaries

The Path Forward: Proper Motions

NIRC2 relative astrometry is calibrated to ~1 mas precision (e.g., Yelda et al. 2010), yielding proper motions good to <1 mas/yr across multi-year baselines. *We're resolving out the orbital motion of companions and the intrinsic velocity dispersion of interlopers.*

Dupuy et al. (2017, in prep)

The Path Forward: Orbits

team for Keck/HIRES followup.

The Path Forward: Orbits

preliminary)

Path Forward: Colors

~100/500 candidate companions have optical counterparts from Robo-AO or DSSI, mostly bright/wide candidates that could plausibly be bound or background. See upcoming talk by Carl Ziegler for Robo-AO sample (all KOIs), plus Hirsch et al. (2017).

Optical

The Path Forward: Model Upgrades

- Systematics Include:
 - Drawing from Realistic Binary Population
 - Simulations Match Sample Distances
 - Malmquist Bias (+binaries)
 - Random Orbital Phase (-binaries)
 - Planet Detectability/Flux Dilution (-binaries)
 - Two Stars to Host the Planets (+binaries)
 - Stellar Mass-Dependent Planets (-binaries)
 - Biases in KIC and Kepler Target List? (-binaries)

The Path Forward: Model Upgrades

- Systematics Include:
 - Drawing from Realistic Binary Population
 - Simulations Match Sample Distances

First simulate a binary population, try to detect binaries.

Then simulate realistic planets around both stars, and try to detect those too.

- Two Stars to Host the Planets (+binaries)
- Stellar Mass-Dependent Planets (-binaries)
- Biases in KIC and Kepler Target List? (-binaries)

Note: Differential Signal is Robust

Takeaway Points

- Inside ~50 AU, ~2/3 of binary systems don't form planets. Wider binaries are fine. This affects 1/5 of all stars.
- Why do some close binaries succeed at planet formation/survival? Unclear. Suspects include binary eccentricity or disk/binary mutual inclination, but some very odd systems survive.
- The binary+planet surveys are no longer difficult; controlling for systematics is probably the largest remaining challenge.

For Context: Disk (Non)Survival

(Also see Jensen et al. 1996, Ghez et al. (1997), White & Ghez (2001), Cieza et al. (2009), Duchene et al. (2010), and many many others...)

Non-Redundant Aperture Masking

Used Keck/NIRC2 to observe >400 KOIs out to d=400 pc with imaging, coronagraphy, and non-redundant aperture masking (NRM).

(NRM): Place a mask in the pupil plane, turning the single mirror into a sparse array. Fourier analysis techniques filter most remaining noise from atmosphere

KOI Binary Search Sample

Detections: Observed vs Predicted

Background color: Simulation of known binary occurrence rate with Malmquist bias + detection limits included

Detections and Detection Limits

...so far, survival does not correlate with planet size, planet multiplicity (16:10:3:1), or binary mass ratio.