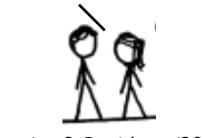

Constrains on the frequency of sub-stellar companions on wide circumbinary orbits

Mariangela Bonavita¹ & the SP TS team

¹Institute for Astronomy, The University of Edinburgh

Unexplored planet population!

 $\checkmark > 50$ % stars are in multiple star systems (Duquennoy & Mayor 1991)


✓ Most exoplanet surveys are biased against multiple stars*

Unexplored planet population!

 $\checkmark > 50$ % stars are in multiple star systems (Duquennoy & Mayor 1991)

✓ Most exoplanet surveys are biased against multiple stars*

*This doesn't mean there are no binaries in those samples

Bonavita & Desidera (2007)

□Mostly overlooked

✓ The few dedicated surveys for planets in binaries focused on Ptype orbits

□Mostly overlooked

✓ The few dedicated surveys for planets in binaries focused on Ptype orbits

□Probably abundant (?)

- \checkmark ~10 confirmed companions detected with Kepler up to now
- ✓ ~60% of close (<3 AU) binaries show IR excess rate

□Mostly overlooked

✓ The few dedicated surveys for planets in binaries focused on Ptype orbits

□Probably abundant (?)

- \checkmark ~10 confirmed companions detected with Kepler up to now
- ✓ ~60% of close (<3 AU) binaries show IR excess rate

Well suited for detection with Direct Imaging

- ✓ Unlike RV and Transits, Direct Imaging is mostly sensitive to planets on wide orbits
- \checkmark Few planetary mass companions already imaged so far

First direct imaging survey dedicated to circumbinary planets

First direct imaging survey dedicated to circumbinary planets

ULT/NaCo Pilot Survey (Thalmann et al 2014)

- ✓ 26 Targets
- ✓ 10 candidates
- \checkmark No confirmed co-moving companions

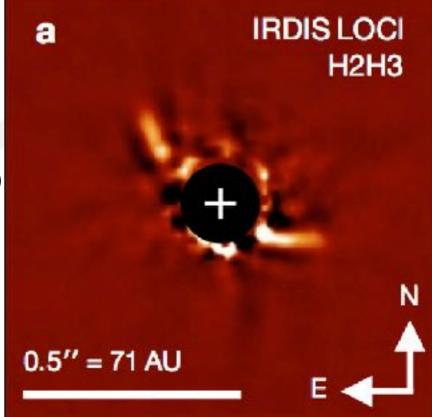
First direct imaging survey <u>dedicated to circumbinary planets</u>

ULT/NaCo Pilot Survey (Thalmann et al 2014)

- ✓ 26 Targets
- ✓ 10 candidates
- \checkmark No confirmed co-moving companions

UVLT/SPHERE Full Survey

- ✓ 40 Targets
- ✓ Several candidates


First direct imaging survey dedicated to circumbinary planets

ULT/NaCo Pilot Survey (Thalmann et al 2014)

- ✓ 26 Targets
- ✓ 10 candidates
- \checkmark No confirmed co-moving companions

UVLT/SPHERE Full Survey

- ✓ 40 Targets
- ✓ Several candidates
- ✓ 1 resolved circumbinary disk (AK Sco, see Janson et al 2016)

Waiting for SP TS

Waiting for SP OTS

□ Are there binaries hiding in the direct imaging survey target lists?

Waiting for SP OTS

□ Are there binaries hiding in the direct imaging survey target lists?

Can we use those to constrain the frequency of wide circumbinary planets?

Waiting for SP OTS

□ Are there binaries hiding in the direct imaging survey target lists?

Can we use those to constrain the frequency of wide circumbinary planets?

□ Circumbinary (CBIN) Sample

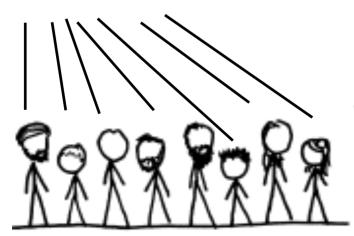
24 Published Direct Imaging Surveys

Table 1: Characteristics of the surveys considered to build the circumbinary (CBIN) sample. Both the total number of targets included in each survey $(N_{S,r})$ and the number of stars considered in our study (N_{CEDI}) are reported.

Source	Instrument	Technique	Filter	$N_{3,r}$	News	Reference
1.05	HST/NICMOS	COR	H(1.4-1.8)	45	6	Lowrance et al. (2005)
B 06	VLT/NACO	COR	Ky/H	17	3	Branceker et al. [2006]
B 07	VLT-NACO/MMT	SDI	H	45	7	Biller et al. (2007)
K07	VLT/NACO	DI	L	22	4	Kasper et al. (2007)
GDPS	GEMINI/NIRI	SDI	н	85	8	Lafrenière et al. [2007]
CH10	VLT/NACO	COR	H/K_S	91	9	Chauvin et al. (2010)
H10	Clio/MMT	ADI	L'/M	54	3	Heinze et al. (2010)
IBH	GEMINI/NIRI	ADL	K/11	18	3	Janson et al. (2011)
JJ12	VLT/NACO	DI	Ks	1	1	Joergens et al. (2012)
V12	VLT/NACO, NIRI	ADI	Ky/IP/CI14	42	3	Vigan et al. (2012)
R 13	VLT/NACO	ADI	Ľ	59	3	Kameau et al. (2013b)
B13	SUBARU/HiCiao	DI/ADI/PDI	H	63	6	Brandt et al. (2014a)
J13	SUBARU/HiCiao	ADI	н	50	4	Janson et al. (2013a)
Y13	SUBARU/UiCiao	ADI	$11/K_S$	20	3	Yamamoto et al. (2013)
N13	GEMINI/NICI	ADI/ASDI	н	70	4	Nielsen et al. (2013)
BN13	GEMINI/NICI	ADI/ASDI	H	80	4	Biller et al. (2013)
JL13	GEMINI/NICI	DI/ADI	Ks	138	5	Janson et al. (2013b)
L14	GEMINI/NIRI	DI/ADI	K_5	91	18	Lafrenière et al. 2014
SONG	HST	ADI	н	116	14	Song et al. priv. comm.
M14	VLT/NACO	ASDI	н	16	1	Maire et al. (2014)
NLP	VLT/NACO	DI/ADI	H	110	8	Chauvin et al. (2015)
D15	GEMINI/NIRI	DI	Ks	64	4	Daemgen et al. (2015)
B 15	SUBARU/HICIAO	DI/ADI	Ks	31	5	Bowler et al. [2015]
	KECK/NIRC2/N	DI/ADI	H	59	3	
1.15	VLT/NACO	ADL	12	58	10	Lannier et al. 2016 (submitted)

Techniques: COR = Coronagraphy: SDI = Spectral Differential Imaging; DI = Direct Imaging; ADI = Angular Differential Imaging; PDI = Polarized Differential Imaging; ASDI = Angular and Spectral Differential Imaging

Circumbinary (CBIN) Sample

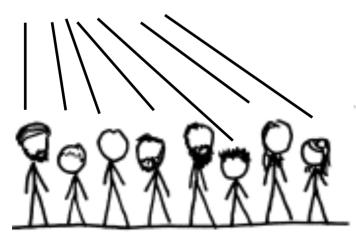

- 24 Published Direct Imaging Surveys
- 117 Systems
 - ✓86 binaries
 - ✓31 higher order multiples
- 5 Detections
 - \checkmark 2 planetary mass companions
 - ✓3 low-mass brown dwarfs

Name	Mass	Separation
HIP 59960 b	11 M _{Jup}	654 AU
2MASS J0103 AB b	13 M _{Jup}	84 AU
TWA 5 B	20 M _{Jup}	127 AU
HIP 19176 B	32 M _{Jup}	400 AU
H II 1348 B	56 M _{jup}	145 AU

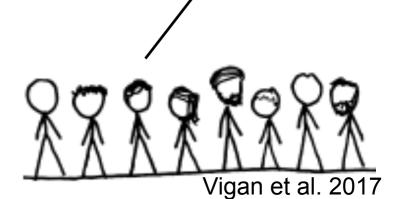
- □ Circumbinary (CBIN) Sample □ Single Stars (SS) Sample
 - 24 Published Direct Imaging Surveys
 - 117 Systems
 - \checkmark 86 binaries
 - \checkmark 31 higher order multiples
 - 5 Detections
 - \checkmark 2 planetary mass companions
 - \checkmark 3 low-mass brown dwarfs

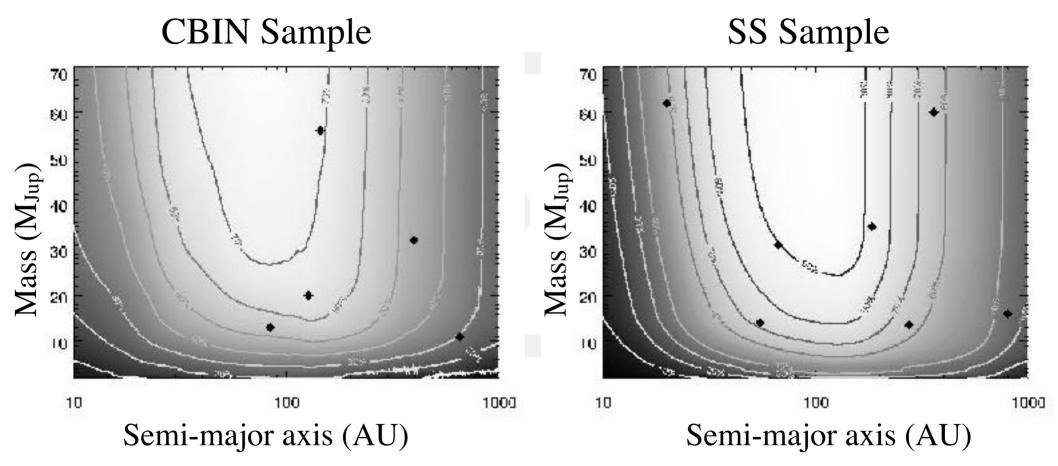
- 205 stars from Brandt et al. 2014
- 7 Detections
 - ✓ 2 planetary mass companions
 - ✓ 5 low-mass brown dwarfs

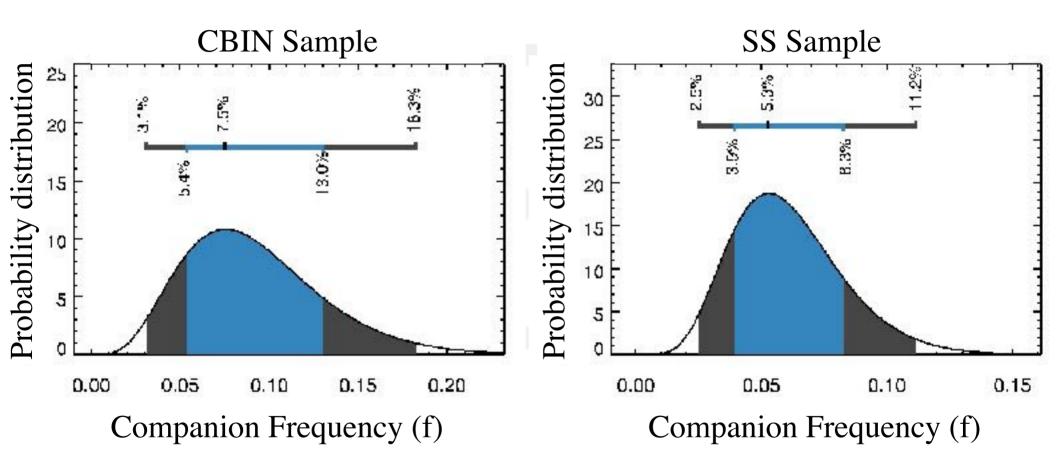
Why didn't you use the full sample?

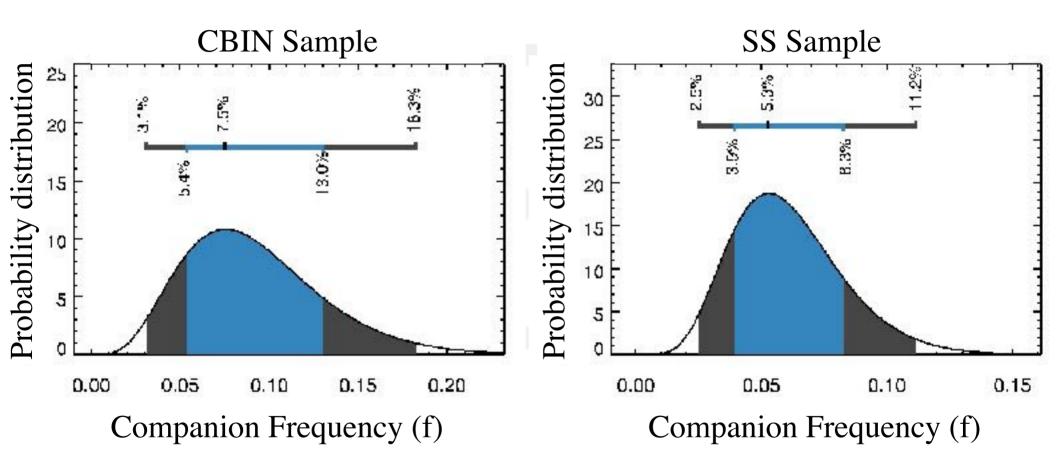

Because I wanted to publish!

□ Circumbinary (CBIN) Sample □ Single Stars (SS) Sample


- 24 Published Direct Imaging Surveys
- 117 Systems
 - ✓86 binaries
 - \checkmark 31 higher order multiples
- 5 Detections
 - \checkmark 2 planetary mass companions
 - \checkmark 3 low-mass brown dwarfs


- 205 stars from Brandt et al. 2014
- 7 Detections
 - ✓ 2 planetary mass companions
 - ✓ 5 low-mass brown dwarfs


Why didn't you use the full sample?



We actually did it in the end...

There's no strong difference, in terms of the frequency of wide sub-stellar companions, between close binaries and single stars

There's <u>no strong difference</u>, in terms of the frequency of wide sub-stellar companions, <u>between close binaries and single stars</u>

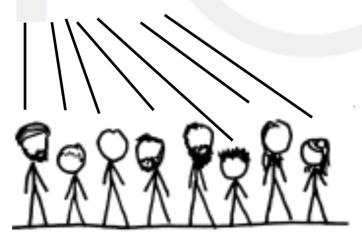
How does this relate to the Kepler results?

SPOTS VS

• Our sample includes binaries similar to those targeted by Kepler but:

- \checkmark Constraints on the binary orbits are not good enough
- ✓ Most DI companions are very far from the stability limit

Name	Mass	Separation	Stability Limit	
HIP 59960 b	$11 \ \mathrm{M_{Jup}}$	654 AU	~2 AU	
2MASS J0103 AB b	13 M _{Jup}	84 AU	~43 AU	
TWA 5 B	$20 \ M_{Jup}$	127 AU	~ 12 AU	
HIP 19176 B	32 M _{Jup}	400 AU	~ 40 AU	
H II 1348 B	56 M _{jup}	145 AU	~ 10 AU	

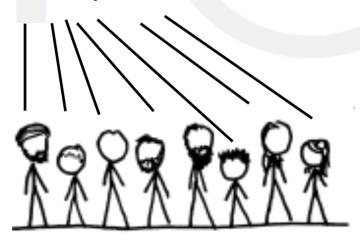

SPOTS VS

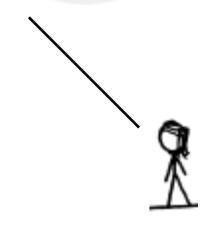
• Our sample includes binaries similar to those targeted by Kepler but:

- \checkmark Constraints on the binary orbits are not good enough
- $\checkmark Most DI companions are very far from the stability limit$

How does this relate to the Kepler results?

I don't know...


SPOTS VS


• Our sample includes binaries similar to those targeted by Kepler but:

- \checkmark Constraints on the binary orbits are not good enough
- $\checkmark Most DI companions are very far from the stability limit$

How does this relate to the Kepler results?

We need more data!

Conclusions

There's <u>no strong difference</u>, in terms of the frequency of wide sub-stellar companions, <u>between close binaries and single stars</u>

Further information is needed to clarify whether the DI circumbinary planets and the Kepler ones belong to different populations

Bonavita et al. 2016

This is the SP OTS team

They look at binary stars to find planets

The SP TS team members are brave

Be like the SP TS team