HOW PLANETARY PROPERTIES AND STELLAR IRRADIATION SET ATMOSPHERIC STRUCTURE

THOMAS G. BEATTY

PENNSYLVANIA STATE UNIVERSITY

CENTER FOR EXOPLANETS AND HABITABLE WORLDS

Center for Exoplanets and Habitable Worlds

Hot Jupiter atmospheres are complicated, multi-parameter, systems.

Parmentier et al. (2016)

Inversions are believed to be caused by either TiO or VO gas in the upper atmosphere

Fortney et al. (2008)

Gaseous TiO should be in the upper atmosphere of giant planets hotter than about 1700K

Fortney et al. (2008)

Know Thy Star – Know Thy Planet

We have planets expected to show an inversion, but do not have a clear signature of

one

We have planets expected to show an inversion, but do not have a clear signature of

one

While very hot planets do show inversions

HST/WFC3 observations of WASP-103b (2900K) appear isothermal

Cartier, Beatty, et al. (2016)

What happens at high surface gravity?

In high surface gravity atmospheres, a coldtrap can clear out the material causing an inversion

 Day-night cold trap: condensation occurs on the cold night side, and condensates fall deep enough to not revaporize during the day (Parmentier et al. 2013).

Parmentier et al. (2013)

To first order, the efficiency of a cold-trap will scale as the free-fall timescale, which goes as:

scale height (H)/terminal velocity (V $\downarrow T$) $\propto T/2$

 $H = k \downarrow b T/\mu \downarrow m g \quad V \downarrow T = 2a \uparrow 2 g(\rho \downarrow p - \rho)/9\eta$

- T temperature
- g surface gravity
- a particle size

We observed an eclipse of the transiting 30 Jupiter-mass brown dwarf KELT-1, using LBT

A GP regression gives a +/-94 ppm broadband eclipse measurement

We measure the eclipse spectrum at R~50 and a precision of 135 ppm

Both measurements rely on a detailed spectrophotometric pipeline we've developed to work with LUCI's H2RG detectors

The dayside temperature profile of KELT-1b is monotonically decreasing

Beatty et al. (2016a)

The high surface-gravity of KELT-1b plays a significant role in its atmospheric properties

3500 3250 Ō Temp. 3000 2750 Brightness 2500 2250 Decreasing Side 2000 Inverted Isothermal Day 1750 Ambiguous 10.0 0.1 1.0 Surface Gravity (Jupiter=1)

Planets with HST/WFC3 Eclipse Observations

We also observed an HST/WFC3 eclipse of the 6.5 Jupiter-mass planet Kepler-13Ab

Beatty et al. (2016b)

The eclipse spectrum we measure also indicates a monotonically decreasing temperature

Beatty et al. (2016b)

In planets, high surface gravity also plays a clear role in setting the atmospheric properties

Planets with HST/WFC3 Eclipse Observations

A toy model based on Parmentier et al. (2013), shows where the atmospheres will clear

The transition in atmospheric structure could be explained as the signature of cold-traps

Know Thy Star, and Know Thy Planet

This year we're on track to observe six more systems with LBT/LUCI

The other aspect is how the temperature structure changes from the day to night

Spitzer phase curves of KELT-1b

3.6 µm

4.5 μm

Summary:

- Know thy star: very hot Jupiters around 3000K show atmospheric temperature inversions. The high amount of stellar irradiation helps set the temperature structure.
- We can observe precise exoplanet eclipse spectra from the ground in the NIR.
 - 135ppm and R~50; effectively HST-quality results.
- Eclipse spectra show a transition in temperature structure going from low to high surface gravity, which match the predicted observational signatures of "cold-trap" processes.
 - Since cold-trap efficiency depends upon condensate size, this could allow us to map out the condensate sizes in these atmospheres for the first time.
- For atmospheres, we need to know thy star, and thy planet.