
Andrew Vanderburg !
NASA Sagan Fellow

The University of Texas at Austin

Sagan/Michelson Fellows Symposium
November 9, 2017

 Towards Better Planet Occurrence
Rates from Kepler and K2

Collaborators

Andy Mayo
Harvard undergrad

—> Copenhagen Univ. Fulbright
—> UC Berkeley grad (Fall 2018)

Google Brain

Chris Shallue

Outline

• Planet occurrence rates and
where we stand now

• Neural networks and how
we can use them to identify
planets

• Spectroscopy of K2
candidates to measure the
planet radius distribution

Image: NASA

Planet Occurrence Rates

Image: Oliver Hardy and Wikimedia

Planet Occurrence Rates

F = Np/N★

Planet Occurrence Rates

F = 6/30 = 20%

Planet Occurrence Rates

Completeness

Completeness

Reliability

Reliability

Kepler is incomplete and unreliable
at the limits of its sensitivity.

Burke+2015Thompson+2017

Kepler is incomplete and unreliable for
Earth-sized planets in Earth-like orbits.

Burke+2015Thompson+2017

There is an order of magnitude
uncertainty on the occurrence of Earths

around Sun-like stars

Burke+2015

• 1. Increase sensitivity (and therefore completeness) by
allowing weaker signals to be considered as planet
candidates, at the cost of a higher false positive rate.

• 2. Use deep learning to more effectively distinguish real
signals from false alarms and false positives, keeping
reliability high.

Our Approach

• 1. Increase sensitivity (and therefore completeness) by
allowing weaker signals to be considered as planet
candidates, at the cost of a higher false positive rate.

• 2. Use deep learning to more effectively distinguish real
signals from false alarms and false positives, keeping
reliability high.

Our Approach

Google Brain

Chris Shallue

Deep Learning

Given some image/vector as input, perform math operations
which convert the image to an output.

The operations are “learned” by minimizing some
cost function which compares data from a training set

to their known classification.

Image: deeplearning.net

Church

http://deeplearning.net

Inputs: binned and phase-
folded Kepler light curves

Identifying Exoplanets with Deep Learning 5

Fig. 3.— Light curve representations that we use as inputs to our neural network models. The “global view” is a fixed-length representation
of the entire light curve, and the “local view” is a fixed-length representation of a window around the detected transit. (a) Strong planet
candidate. (b) Long-period planet where the transit falls into just one bin in the global view. (c) Secondary eclipse that looks like a planet
in the local view.

equally, but it only looks at part of the curve and there-
fore may miss important information, such as secondary
eclipses (Figure 3c)
Similar techniques are used by Armstrong et al. (2017)

(local binning) and Thompson et al. (2015) (global bin-
ning away from the transit and local binning near the
transit). Unlike those papers, we use these two represen-
tations as separate inputs to our model.
Finally, we normalized all light curves to have median

0 and minimum value -1 so that all TCEs had a fixed
transit depth.

4. AUTOMATIC VETTING MODELS

4.1. Neural Network Architectures

We consider 3 types of neural network for classifying
Kepler TCEs as either “planets” or “not planets”. For
each type, we consider 3 di↵erent input options: just the
global view, just the local view, and both the global and
local views.

• Linear architecture. Our baseline model is a
neural network with zero hidden layers (which is
equivalent to a linear logistic regression model).

This is a natural choice for its simplicity and popu-
larity, but it makes the strong assumption that the
input data is linearly separable – that is, planets
and non-planets are separated by a linear decision
surface in the input space. If both global and lo-
cal views are present, we concatenate them into a
single input vector.

• Fully connected architecture. A fully con-
nected neural network is the most general type of
neural network and makes the fewest assumptions
about the input data. If both global and local views
are present, we pass the two vectors through dis-
joint columns of fully connected layers before com-
bining them in shared fully connected layers (Fig-
ure 4).

• Convolutional architecture. Convolutional
neural networks have been tremendously success-
ful in applications with spatially structured input
data, including speech synthesis (Oord et al. 2016)
and image classification (Krizhevsky et al. 2012).
We use a 1-dimensional convolutional neural net-
work with max pooling. This architecture assumes

Local View: close-up
look at the transit

Global View:
shows phase-variations,
 secondary eclipses, etc

Shallue & Vanderburg (submitted)

Proof of Concept Neural
Network for Planet Vetting

6 Shallue & Vanderburg

Fig. 4.— Fully connected neural network architecture for classi-
fying light curves, with both global and local input views.

Fig. 5.— Convolutional neural network architecture for classify-
ing light curves, with both global and local input views.

that input light curves can be described by spatially
local features, and that the output of the network
should be invariant to small translations of the in-
put. If both global and local views are present,
we pass the two vectors through disjoint convo-
lutional columns before being combining them in
shared fully connected layers (Figure 5).

All hidden layers use the ReLU (linear rectifier) ac-
tivation function, and the output layer uses the sigmoid
activation function. Each model outputs a value in (0, 1),
with values close to 1 indicating high confidence that the
input is a transiting planet and values close to 0 indicat-
ing high confidence that the input is a false positive.

4.2. Training Procedure

We implemented our models in TensorFlow, an open
source software library for numerical computation and
machine learning (Abadi et al. 2016). We used the Adam
optimization algorithm (Kingma & Ba 2015) to mini-
mize the cross-entropy error function over the training
set (Section 2.4). To avoid overfitting, we augmented our
training data by applying random horizontal reflections
to the light curves. We also applied dropout regulariza-
tion to the fully connected layers, which helps prevent
overfitting by randomly “dropping” some of the output
neurons from each layer during training to prevent the
model becoming overly reliant on any of its features (Sri-
vastava et al. 2014).
We used the Google-Vizier system for black-box opti-

mization (Golovin et al. 2017) to automatically tune our
hyperparameters, including those for the input represen-
tations (e.g. number of bins, bin width), model archi-
tecture (e.g. number of fully connected layers, number

of convolutional layers, kernel size), and training (e.g.
dropout probability). Each Vizier “study” trained sev-
eral thousand models to find the hyperparameter config-
uration that maximized AUC9 on the validation set. We
ran many studies during model development as we it-
eratively improved our input representations and design
decisions. We tuned each combination of architecture
and input representation separately.

4.3. Model Averaging

Once we had selected the optimal hyperparameters for
a particular architecture and input representation, we
trained 10 independent copies with di↵erent random pa-
rameter initializations. We used the average outputs of
these 10 copies for all predictions in Sections 5 and 6.
This technique, known as “model averaging” (a type of
“ensembling”), often improves performance because dif-
ferent versions of the same configuration may perform
better or worse on di↵erent regions of the input space,
especially when the training set is small and overfitting is
more likely. It also makes di↵erent configurations more
comparable by reducing the variance that exists between
individual models.

5. MODEL ANALYSIS

5.1. Test Set Performance

Two key measures of a vetting system’s performance
are its completeness (the fraction of real planets that are
classified as planets) and reliability (the fraction of clas-
sified planets that are real planets). To compute these
values, we must first select an appropriate classification
threshold for our models. A natural choice is to classify
a TCE as a planet candidate if its predicted probability
of being a planet is above 0.5, and as a false positive if
its predicted probability is below 0.5, but this threshold
can be adjusted to trade-o↵ completeness versus reliabil-
ity. Increasing the threshold typically results in higher
reliability at the expense of lower completeness, and vice-
versa.
Figure 6 shows reliability versus completeness (preci-

sion versus recall) for our three model architectures on
our test set, which consists of 1,523 TCEs that were not
used to train our models or inform our hyperparameter
decisions. All models in Figure 6 use both global and lo-
cal input views. Our convolutional architecture performs
the best, followed by our fully connected architecture. A
full description of our best model’s configuration is pre-
sented in Section 5.2.
We also computed the accuracy (Table 1) and AUC

(Table 2) of each combination of model architecture and
input representation on our test set. Accuracy is the
fraction of correct classifications, which depends on the
classification threshold (here we have chosen 0.5). AUC
is the Area Under the receiver operating characteristic
Curve, which is equivalent to the probability that a ran-
domly selected planet is scored higher than a randomly
selected false positive. AUC measures a model’s ability
to rank TCEs: the maximum AUC value of 1 would in-
dicate that all planets are ranked higher than all false
positives.

9 AUC is the Area Under the receiver operating characteristic
Curve, which measures a model’s e↵ectiveness at sorting positive
examples from negative examples. See Section 5.1.

Planet

Shallue & Vanderburg (submitted)

6 Shallue & Vanderburg

Fig. 4.— Fully connected neural network architecture for classi-
fying light curves, with both global and local input views.

Fig. 5.— Convolutional neural network architecture for classify-
ing light curves, with both global and local input views.

that input light curves can be described by spatially
local features, and that the output of the network
should be invariant to small translations of the in-
put. If both global and local views are present,
we pass the two vectors through disjoint convo-
lutional columns before being combining them in
shared fully connected layers (Figure 5).

All hidden layers use the ReLU (linear rectifier) ac-
tivation function, and the output layer uses the sigmoid
activation function. Each model outputs a value in (0, 1),
with values close to 1 indicating high confidence that the
input is a transiting planet and values close to 0 indicat-
ing high confidence that the input is a false positive.

4.2. Training Procedure

We implemented our models in TensorFlow, an open
source software library for numerical computation and
machine learning (Abadi et al. 2016). We used the Adam
optimization algorithm (Kingma & Ba 2015) to mini-
mize the cross-entropy error function over the training
set (Section 2.4). To avoid overfitting, we augmented our
training data by applying random horizontal reflections
to the light curves. We also applied dropout regulariza-
tion to the fully connected layers, which helps prevent
overfitting by randomly “dropping” some of the output
neurons from each layer during training to prevent the
model becoming overly reliant on any of its features (Sri-
vastava et al. 2014).
We used the Google-Vizier system for black-box opti-

mization (Golovin et al. 2017) to automatically tune our
hyperparameters, including those for the input represen-
tations (e.g. number of bins, bin width), model archi-
tecture (e.g. number of fully connected layers, number

of convolutional layers, kernel size), and training (e.g.
dropout probability). Each Vizier “study” trained sev-
eral thousand models to find the hyperparameter config-
uration that maximized AUC9 on the validation set. We
ran many studies during model development as we it-
eratively improved our input representations and design
decisions. We tuned each combination of architecture
and input representation separately.

4.3. Model Averaging

Once we had selected the optimal hyperparameters for
a particular architecture and input representation, we
trained 10 independent copies with di↵erent random pa-
rameter initializations. We used the average outputs of
these 10 copies for all predictions in Sections 5 and 6.
This technique, known as “model averaging” (a type of
“ensembling”), often improves performance because dif-
ferent versions of the same configuration may perform
better or worse on di↵erent regions of the input space,
especially when the training set is small and overfitting is
more likely. It also makes di↵erent configurations more
comparable by reducing the variance that exists between
individual models.

5. MODEL ANALYSIS

5.1. Test Set Performance

Two key measures of a vetting system’s performance
are its completeness (the fraction of real planets that are
classified as planets) and reliability (the fraction of clas-
sified planets that are real planets). To compute these
values, we must first select an appropriate classification
threshold for our models. A natural choice is to classify
a TCE as a planet candidate if its predicted probability
of being a planet is above 0.5, and as a false positive if
its predicted probability is below 0.5, but this threshold
can be adjusted to trade-o↵ completeness versus reliabil-
ity. Increasing the threshold typically results in higher
reliability at the expense of lower completeness, and vice-
versa.
Figure 6 shows reliability versus completeness (preci-

sion versus recall) for our three model architectures on
our test set, which consists of 1,523 TCEs that were not
used to train our models or inform our hyperparameter
decisions. All models in Figure 6 use both global and lo-
cal input views. Our convolutional architecture performs
the best, followed by our fully connected architecture. A
full description of our best model’s configuration is pre-
sented in Section 5.2.
We also computed the accuracy (Table 1) and AUC

(Table 2) of each combination of model architecture and
input representation on our test set. Accuracy is the
fraction of correct classifications, which depends on the
classification threshold (here we have chosen 0.5). AUC
is the Area Under the receiver operating characteristic
Curve, which is equivalent to the probability that a ran-
domly selected planet is scored higher than a randomly
selected false positive. AUC measures a model’s ability
to rank TCEs: the maximum AUC value of 1 would in-
dicate that all planets are ranked higher than all false
positives.

9 AUC is the Area Under the receiver operating characteristic
Curve, which measures a model’s e↵ectiveness at sorting positive
examples from negative examples. See Section 5.1.

Not a Planet

Proof of Concept Neural
Network for Planet Vetting

Shallue & Vanderburg (submitted)

Network
Architecture

Shallue & Vanderburg (submitted)

Results

Comparable to industry standards like
Robovetter, but work necessary to incorporate
other information as inputs (difference images,

quarterly depth variations, etc.)
Shallue & Vanderburg (submitted)

AUC Accuracy

Our work 0.988 0.960

Coughlin et al. (Robovetter) 0.974 0.974

Armstrong et al. 0.87

McCauliff et al. (Autovetter) (0.997)*
not held-out results

(0.986)*
not held-out results

Proof of concept search of
Kepler multiplanet systems

Shallue & Vanderburg (submitted)

S/N = 8.6

Can we study planet occurrence with the
K2 mission?

Image Credit: ESO / Serge Brunier, Frederic Tapissier

K2

Kepler

Metal rich
stars

Stars in
open clusters

Old stars

How do planetary systems
vary in different galactic environments?

Image: Oliver Hardy,Wikimedia,NASA

Occurrence rates with K2 are challenging
for several reasons, including

inhomogenous stellar parameters.

Spectra of 275 K2 candidates from
Whipple Observatory (Mt. Hopkins)

Spectra of 275 K2 candidates from
Whipple Observatory (Mt. Hopkins)

Harvard undergrad
—> Copenhagen Univ. Fulbright
—> UC Berkeley grad (Fall 2018)

Andy Mayo

Planet Candidate
 Vetting and Validation

Mayo,Vanderburg,+
(in prep)

Planet Candidate
 Vetting and Validation

Mayo,Vanderburg,+
(in prep)

275 Candidates!
147 Validated Planets

Planet Radius Distribution

20 Mayo et al.

Figure 12. A histogram of planetary radius for the validated planets and candidates in C0-C10 of K2 that have been identified in this
work. See Figs. 13 and 14 for narrower ranges, a completeness correction, and a comparison against the Fulton et al. (2017) planet candidate
sample.

Figure 13. Left: a histogram of planetary radius for the validated planets and candidates in C0-C10 of K2 that have been identified in this
work (between 0.7� 12R�). Right: the same data as presented in the right panel, with a completeness-corrected applied to estimate the
underlying planet population. Error bars for each bin correspond to 1/

p
n (where n is the number of objects in the bin) scaled according to

the completeness correction subsequently performed. Through visual inspection, the full candidate sample appears to exhibit a frequency
gap centered near 1.9R�. Mayo,Vanderburg+ (in prep)

Planet Radius Distribution

20 Mayo et al.

Figure 12. A histogram of planetary radius for the validated planets and candidates in C0-C10 of K2 that have been identified in this
work. See Figs. 13 and 14 for narrower ranges, a completeness correction, and a comparison against the Fulton et al. (2017) planet candidate
sample.

Figure 13. Left: a histogram of planetary radius for the validated planets and candidates in C0-C10 of K2 that have been identified in this
work (between 0.7� 12R�). Right: the same data as presented in the right panel, with a completeness-corrected applied to estimate the
underlying planet population. Error bars for each bin correspond to 1/

p
n (where n is the number of objects in the bin) scaled according to

the completeness correction subsequently performed. Through visual inspection, the full candidate sample appears to exhibit a frequency
gap centered near 1.9R�. Mayo,Vanderburg+ (in prep)

Planet Radius Distribution

20 Mayo et al.

Figure 12. A histogram of planetary radius for the validated planets and candidates in C0-C10 of K2 that have been identified in this
work. See Figs. 13 and 14 for narrower ranges, a completeness correction, and a comparison against the Fulton et al. (2017) planet candidate
sample.

Figure 13. Left: a histogram of planetary radius for the validated planets and candidates in C0-C10 of K2 that have been identified in this
work (between 0.7� 12R�). Right: the same data as presented in the right panel, with a completeness-corrected applied to estimate the
underlying planet population. Error bars for each bin correspond to 1/

p
n (where n is the number of objects in the bin) scaled according to

the completeness correction subsequently performed. Through visual inspection, the full candidate sample appears to exhibit a frequency
gap centered near 1.9R�. Mayo,Vanderburg+ (in prep) Fulton+2017

Conclusions
• We have used deep neural networks to vet Kepler

planet candidates and achieved good results in a
proof-of-concept test.

• By lowering detection thresholds and compensating
for the increased number of false positives, we can
improve Kepler’s sensitivity to weak transit signals.
We have detected new planets in Kepler multi-planet
systems using this strategy.

• We are working towards occurrence studies with K2
data by carefully characterizing and vetting planet
candidates and their host stars. We can see the first
hint of the gap in the planet radius distribution in K2
data.

Backup Slides

Visualizing the Network’s Decisions

Visualizing the Network’s Decisions

Visualizing the Network’s Decisions

Visualizing the Network’s Decisions

Visualizing the Network’s Decisions

Visualizing the Network’s Decisions

Raw Light Curve

Producing Input Vectors

Fit Normalization B-Splines

Producing Input Vectors

Normalized Light Curve

Producing Input Vectors

Planet Transits (7 day period)

Producing Input Vectors

Individual Transits

Producing Input Vectors

Phase Folded

Producing Input Vectors

Running Median

Running
Median

𝛅

Producing Input Vectors

Running Median

Producing Input Vectors

