A Scatter of Light from Polarized Worlds

Sloane J. Wiktorowicz The Aerospace Corporation Class of 2011-2014

Sagan / Michelson Fellows Symposium 11/10/17

Exoplanet Science Must Diversify Techniques

Searching for keys under a lamppost

- Follow-up transmission spectroscopy and occultation photometry require transits due to calibration limitations (except for Birkby, imaging folks et al.)
- Only 9 / 65 close-in, RV-discovered planets transit (for a(1-e) < 0.075)
- CoRoT, HAT(S), Kepler, K2, KELT, MEarth, OGLE, PH, Qatar, (TESS), TRAPPIST, TrES, WASP, WTS, and XO planets increase the sample

- But many exoplanets have flat transmission spectra from hazes or clouds
- Will have to vet these planets so JWST time is not wasted
- Difficult to identify specific absorber properties with existing techniques
- Main follow-up techniques can only study the select few planets with clear atmospheres in transiting geometries

After all this effort to find planets we can study, many will still be inaccessible to JWST

Polarization: Quadruple Your Information

Turn a scalar into a four-vector

- "Stokes V"
- Not relevant for exoplanets, but it identifies metallic regions on asteroids

Polarimetry: measurement of the full electric field state of light

South

Polarization Ideal for Particulates

Polarized fogbow, Haleakala

Polarimetry identifies gas molecules vs. fractal hazes vs. cloud particles

Discovery of Venus' Sulfuric Acid Clouds

Polarization encodes particle size, shape, index of refraction

Rainbows are polarized, and their geometry is caused by particle composition

Photoelastic Modulators Enable 1 ppm Accuracy

Waveplates, FLCs limited to 10-100 ppm accuracy

t = 0 µs

- <u>Birefringent material</u> Index of refraction is a function of E orientation
- <u>Non-birefringent material</u>
 Stress ⇒ birefringence

Polarization Signatures of Gases, Hazes, and Clouds

Amplitude and orbital phase location of polarization peak

Hard to identify particles from intensity, easier in polarization

Full-Orbit Phase Curves are Crucial

11

- Identify particle composition: index of refraction vs. λ
- Identify particle size distribution: orbital phase location of peak polarization
- Distinguish differences in particle properties between morning and evening terminators (condensing vs. non-condensing)

Polarimetry Leverages Ground-Based Telescopes

Nov. 2016 commissioning, Gemini North 8-m

Discovery of Scattered Light from an Exoplanet

- B band geometric albedo of 0.335 ± 0.059 : 4.7 σ detection
- Null hypothesis (constant, zero polarization) rejected with 4.4σ confidence
- Albedo < 0.8 requires haze or cloud particles (17% of incident photons absorbed)
- Clear atmosphere rejected with 6.7σ confidence
- Next: distinguish hazes from clouds by searching for rainbow near phase 0.5
 - Next: search for differences between morning and evening terminators

Exoplanet polarimetry has arrived

New Polarimeter PHALANX

Polarimeter for High Accuracy aLbedos of Asteroids aNd eXoplanets

- Gemini: Detailed exoplanet follow-up
- Lick: NASA-funded asteroid observations identifying surface metals
- Aerospace 1-m: asteroids and POLTERGEIST survey around bright stars
 - POLarimetry of TERrestrial and Gaseous Exoplanets Inaccessible to Standard Techniques

Simultaneous 5-band operation for isolation of exoplanet clouds and hazes

Conclusion

- Exoplanet clouds and hazes are common and do not play nicely with current follow-up techniques
- Full-orbit, multi-wavelength, ground-based polarimetry is ideally suited for such planets
 - Particle size, shape, index of refraction, and composition affect phase curve
- Short commissioning run in a single band was sufficient to discover scattered light from an exoplanet, requires absorber with 6.7σ confidence
- Polarimetry is naturally sensitive to scattered light surrounding elongation (90° scattering angle), conveniently when terminators are in view
 - Differences in polarization signature between morning and evening terminators directly probe heat redistribution and cloud condensation
- New polarimeter PHALANX to measure scattered light in 5 bands simultaneously
 - Detailed studies at 6-10m, alt-az telescopes with Cassegrain foci
 - Survey of brightest stars with the Aerospace 1-m telescope

Discovery of Scattered Light from an Exoplanet

- Telescopeinduced polarization manifests as sinusoidal signature vs. parallactic angle on alt-az telescope
- Subtraction of this uncovers science signature

