ipac

Caltech

HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST Marie Ygouf

ExSoCal Conference September 18-19th 2017, Pasadena

HR 8799 planetary system

Jason Wang / Christian Marois Keck data

Confirmed planets*

100 Giants planets and brown dwarfs

Mass (Jupiter Masses)

0.01

0

0

0.01

High contrast imaging science goals

Characterization of known exoplanetary systems

- What is the occurence of wide separated young exoplanets?
- What do they look like?
- How do they form?
- What is their evolutionary path?
- What are their interactions with the circumstellar disk?
- How can we put our solar system into context?

High contrast imaging science goals

Characterization of known exoplanetary systems

- What is the occurence of wide separated young exoplanets?
- What do they look like?
- How do they form?
- What is their evolutionary path?
- What are their interactions with the circumstellar disk?
- How can we put our solar system into context?

Search for new worlds

• How can we detect more of them?

JWST Coronagraphs

JWST Coronagraphs

Confirmed planets*

100 Giants planets and brown dwarfs

Mass (Jupiter Masses)

0.01

0

0

0.01

Semi-Major Axis (AU)

10000 separation

*As 14 June 2017 from exoplanetarchive.ipac.caltech.edu

Imaging

Transits

Microlensing

Astrometry

0.01

100 Giants planets and brown dwarfs

Mass (Jupiter Masses)

0.01

0

0

Confirmed planets*

Mass (Jupiter Masses) 0.01

0

0

Saturn mass

0.01

Coronagraphic Imaging of Young Planets NIRCam GTO Program (PI: Chas Beichman)

Characterization of known exoplanetary systems

worlds

Coronagraphic Imaging of Young Planets NIRCam GTO Program (PI: Chas Beichman)

Characterization of known exoplanetary systems

- What is the occurence of wide separated young exoplanets?
- What do they look like?
- How do they form?
- What is their evolutionary path?
- What are their interactions with the circumstellar disk?
- How can we put our solar system into context?

worlds

Coronagraphic Imaging of Young Planets NIRCam GTO Program (PI: Chas Beichman)

Characterization of known exoplanetary systems

- What is the occurence of wide separated young exoplanets?
- What do they look like?
- How do they form?
- What is their evolutionary path?
- What are their interactions with the circumstellar disk?
- How can we put our solar system into context?

Search for new worlds

• How can we detect more of them?

• Determine atmospheric composition and physical properties to understand formation mechanism of exterior planets

Characterization of known exoplanetary systems

- Final Target List (as of 15 June 2017)
 - HD 95086 b
 - HR 8799 b, c & d
 - HR 8799 e
 - 51 Eri b

NIRCam & MIRI GTOs

Telescope Team GTO

• Determine atmospheric composition and physical properties to understand formation mechanism of exterior planets

Characterization of known exoplanetary systems

- Final Target List (as of 15 June 2017)
 - HD 95086 b
 - HR 8799 b, c & d
 - HR 8799 e
 - 51 Eri b

NIRCam & MIRI GTOS

Telescope Team GTO

- Determine atmospheric composition and physical properties to understand formation mechanism of exterior planets
- roll, 1 reference star for speckle calibration

Characterization with MASKLW

• Extend to lower mass limits compared to ground-based observations

10000

• Extend to lower mass limits compared to ground-based observations

- Final Target List (as of 15 June 2017)
 - HD 95086
 - HR 8799
 - 51 Eri
 - Vega
 - Fomalhaut
 - Eps Eri


```
Moonshots
```


10000

- Extend to lower mass limits compared to ground-based observations
- Observing Strategy: Round Mask 430, 2 filters, 2 rolls, 1 reference star PSF for speckle calibration, some targets both full and narrow fields

- Final Target List (as of 15 June 2017)
 - HD 95086
 - HR 8799
 - 51 Eri
 - Vega
 - Fomalhaut
 - Eps Eri

Moonshots

- Extend to lower mass limits compared to ground-based observations
- Observing Strategy: Round Mask 430, 2 filters, 2 rolls, 1 reference star PSF for speckle calibration, some targets both full and narrow fields

Calculated Planet Magnitudes (10 pc) For 50 Myr						
$M_{ m pl}$ (M_{\odot})	T _{eff} (K)	$L_{ m pl} \ (L_{\odot})$	log(g) (cgs)	F356W (mag)	F444 (ma	
0.0001	139	-8.453	2.41	20.33	17.2	
0.0002	196	-7.794	2.65	19.65	16.7	
0.0003	232	-7.465	2.79	19.23	16.3	
0.0004	262	-7.232	2.89	18.9	16.0	
0.0005	285	-7.069	2.97	18.68	15.8	
0.001	375	-6.587	3.27	17.88	15.1	
0.002	491	-6.1	3.55	16.51	13.9	
0.003	585	-5.789	3.72	15.75	13.3	
0.004	676	-5.531	3.84	15.01	12.8	
0.005	756	-5.336	3.93	14.44	12.4	
0.006	840	-5.152	4.01	13.91	12.1	
0.007	928	-4.978	4.08	13.39	11.8	
0.008	1010	-4.832	4.14	12.96	11.5	
0.009	1085	-4.706	4.19	12.59	11.3	
0.010	1171	-4.569	4.23	12.21	11.1	
				2		

Adapted from Beichuan et al. 2010: Extension of COND03 models (Baraffe et al. 2003) for planetary masses down to 0.1 MJup

masses down to 0.1 MJup (Beichman et al. 2010)

Target	Mass
HD 95086	Jupiter
HR 8799	Saturn
51 Eri	Saturn
Vega	Saturn
Fomalhaut	Saturn
Eps Eri	Saturn

• Exposure time computations for searches up to Saturn Masses at 4" with a 10 nm wavefront drift using the extension of COND03 models (Baraffe et al. 2003) for planetary

Exposure Time	SNR >
~2000	6
~3200	4
~2000	12
~3800	9
~3800	18
~3800	136

Take Home Messages

• Direct imaging is essential to further understand exoplanetology

Take Home Messages

• Direct imaging is essential to further understand exoplanetology

• Direct imaging is hard, not a lot of detected planets

Take Home Messages

- Direct imaging is essential to further understand exoplanetology
- Direct imaging is hard, not a lot of detected planets
- least Saturn masses

• The "Coronagraphic Imaging of Young Planets" program has been designed to do what NIRCam will do best: characterization of known exoplanets and search for news worlds at lower mass limits down to at

First results in about 20 months, ... stay tuned