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2012 TRANSIT OF VENUS

* |nitiated and coordinated a program to design, buy and distribute 43,000 “Transit
of Venus" Solar Eclipse glasses across Canada so that a great number of
Canadians could safely view the Transit of Venus on June Sth, 2012.

OTTAWA.



2012 TRANSIT OF VENUS

» 0Of these 43,000 glasses, 28,000 were distributed to Canadian amateur
organizations, and the remainder were distributed to professional
astronomers.
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THE ART OF ASTROPHYSICS

Co-organized an Astronomy Art contest at MIT that attracted 49 fabulous entries,
and distrbuted $700 in prize money, including a $300 first prize.

THE LIFE OF A STAR IN THE FLAME NEBULA
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THE ART OF ASTROPHYSICS

* Co-organized an Astronomy Art contest at MIT that attracted 49 fabulous entries,
and distrbuted $700 in prize money, including a $300 first prize.
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POSTCARD FROM THE MOON.



THE ART OF ASTROPHYSICS

» All entries were presented at a gallery show.
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OUTLINE: INGAAS CAMERA & PRECISE
NEAR-INFRARED PHOTOMETRY

* Precise near-infrared photometry and * The promising apolication of Indium
how to return repeatable eclipse pre g dapp
Gallium Arsenide (InGaAs)

depths. devices to small telescopes.

- -
- -
-----
-
- -

.....

1.002
1.001

0.999

-
'''''
......

HHHHH

MNormalized Flux

0.998

0.997

-50 (0 50 100
Minutes from expected mid-secondary eclipse

Phase

1.002
1.001

0.999

MNormalized Flux

0998

0.997
50 0 50 100

Minutes from expected mid-secondary eclipse

: OUR INGAAS CAMERA.

LEFT. DIFFERENT REDUCTIONS RETURN
DIFFERENT ECLIPSE DEPTHS.



WHY NEAR-INFRARED FROM THE GROUND?

» The J, H & K-bands are water opacity windows allowing one to see deep in these
planet's atmospheres; K-band observations are best done from the ground.

= The near-infrared often brackets the blackbody peaks of these planets.
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ABOVE: NEAR- AND MID-INFRARED DETECTIONS FOR THE HIGHLY IRRADIATED HOT
JUPITER WASP-12B. DETECTIONS FROM CROLL ET AL. (2010c), LOPEZ-
MORALES ET AL. (2010) & CAMPO ET AL. (201 1).
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WIRCAM NEAR-IR DEFOCUSED PHOTOMETRY

»  WIRCam is optimally suited for
these observations as we are
able to rapidly read-out the array
to avoid saturation, and WIRCam
has a wide field of view (21'x21")
allowing us to simultaneously
observe a great number of
reference stars.

RIGHT: THE FOUR
CHIPS THAT
MAKE UP THE
WIDE-FIELD
INFRARED
CAMERA
(WIRCAM).

BoTTOM: WE
ALSO OBSERVE
SIGNIFICANTLY
OUT OF FOCUS,
SO THAT THE
LIGHT IS
SPREAD OVER A
DONUT.

ToprP: TRES-2B (GREEN SQUARE), AND
VARIOUS REFERENCE STARS USED TO
CORRECT OUR PHOTOMETRY (RED
CIRCLES).




CORRECTING THE RAW PHOTOMETRY

*  We perform aperture photometry on the target star and all the suitably
bright, unsaturated reference stars.

* \We use the reference stars that display the smallest root-mean-square

outside of occultation to correct our target for obvious systematic
variations in intensity.

* The root-mean-square (RMS) improves from 14 mmag to 0.71 mmag per 1
minute for TrES-2b.
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THE FLUX AND THE RESIDUALS OF THE TARGET STAR (BLACK),
AND THE REFERENCE STARS (VARIOUS COLOURS).



WIRCAM LARGE PROGRAM:

THERMAL EMISSION OF TRANSITING EXOPLANETS

BRYCE CROLL, RAY JAYAWARDHANA, Loic ALBERT, ALDO BONOMO, DAVID LAFRENIERE, JONATHAN
FORTNEY, MAGALI DELEUIL, CLAIRE MOUTOU.

~200 HOURS
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REPEATABLE GROUND-BASED NEAR-
INFRARED EcCLIPSE DEPTHS?
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TWO REDUCTIONS/ ANALYSES OF THE KS-BAND ECLIPSE DEPTH OF QATAR-1 IN THE
KS-BAND. ONE HAS A RELATIVELY DEEP DEPTH AND ONE HAS A SHALLOW DEPTH.



REPEATABLE TRANSIT DEPTHS?

Our reported difference between the Ks-band and J-band transit depths of the
super-Earth GJ 1214b (Croll et al. 2011), was refuted by other researchers
(Bean et al. 2011).

* The Ks-band eclipse depths of TrES-3b disagree at the 2-sigma level (de Mooij &
Snellen 2009; Croll et al. 2010b); a ground-based H-band upper-limit appears
to disagree with a spacebased HST/WFC3 detection (Croll et al. 2010b;
Ranjan et al. 2014).

* FORS blue W HAWEI
® FORS red ¥ Spitzer
A MMIRS

Wavelength (um)

FIGURE FROM BEAN ET AL. (201 1): COMPILATION OF THE GJ 1214B TRANSIT
DEPTHS AT THAT TIME ACROSS A WIDE WAVELENGTH RANGE.



LACK OF REPEATABILITY IN

NEAR-INFRARED ECLIPSE DEPTHS?
BEAN ET AL. (2013)

The eclipse depths from MMIRS/Magellan spectrophotometry of a very hot, hot Jupiter
(WASP-19b) agree only at the 2.9-sigma level.
14
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NEAR-INFRARED GROUND-BASED ECLIPSES (BEAN ET AL. 2013; ANDERSON ET
AL. 2010; GIBSON ET AL. 2010; BURTON ET AL. 2012; LENDL ET AL. 2013).



RELIABILITY OF SPITZER & HST ECLIPSES

= (Other instruments on other telescopes have already undergone a series of
revisions in their attempts to return eclipse depths accurate at the sub-
millimagnitude level, including:
- Spitzer/IRAC (e.g. Harrington et al. 2007; Knutson et al. 2009; Knutson et
al. 2007; Charbonneau et al. 2008; Stevenson et al. 2010; Knutson et al.
2011; Zellem et al. 2014; Diamond-Lowe et al. 2014).
- and HST/NICMQOS (e.g. Swain, Vasisht & Tinetti. 2008; Swain et al. 20093;
Swain et al. 2009b; Gibson et al. 2011; Mandell et al. 2011; Gibson et al.
2012; Waldmann et al. 2013; Swain et al. 2014).




FIDELITY OF NEAR-INFRARED ECLIPSE DEPTHS
CROLL ET AL. (2015)

The eclipse depths measured in some data-sets display trends with aperture radii,
or the number of reference stars used.
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FIDELITY OF NEAR-INFRARED ECLIPSE DEPTHS
CROLL ET AL. (2015)

The eclipse depths measured in some data-sets display trends with aperture radii,
or the number of reference stars used.
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QATAR-1 KS-BAND (CROLL ET AL. 2015)
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QATAR2B IN KS

CROLL ET AL. IN PREP.

TOP: THE
UNBINNED
PHOTOMETRY.

SECOND FROM TOP:
THE BINNED
PHOTOMETRY.
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SECOND FROM
BOTTOM: THE
BINNED
PHOTOMETRY AFTER
SUBTRACTING THE
BACKGROUND.
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BOTTOM: RESIDUALS
FROM THE BEST-FIT
ECLIPSE.
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FIDELITY OF NEAR-INFRARED ECLIPSE DEPTHS
QATAR 2 KS-BAND
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WASP-12B.: REPEATABILITY OF ECLIPSE DEPTHS

CROLL ET AL. (2015)

*  We detected WASP-12b’s thermal emission in Ks-band on three occasions. The
eclipse depths were consistent to within 1-sigma, arguably demonstrating the
validity of our techniques. There is also an independent confirmation of our
eclipse depth (Zhao et al. 2011).

WASP-12b

1
Epoch Number

ECLIPSE DEPTHS OF OUR THREE WASP-12 KS-BAND ECLIPSES. THE DASHED
LINES INDICATE THE WEIGHTED MEAN, WHILE THE DOTTED LINES INDICATE
THE 1-SIGMA ERRORS.



WASP-3B: REPEATABILITY OF ECLIPSE DEPTHS

CROLL ET AL. (2015)
» The WASP-3b were roughly consistent.

CFHT/WIRCam +—e— )
Zhao et al. (2012) ] WASP-3b

1
Epoch Number

ECLIPSE DEPTHS OF OUR TWO WASP-3 KS-BAND ECLIPSES, AND ANOTHER
FROM ZHAO ET AL. (2012). THE DASHED LINES INDICATE THE WEIGHTED
MEAN, WHILE THE DOTTED LINES INDICATE THE 1-SIGMA ERRORS.



WASP-43B.: REPEATABILITY OF ECLIPSE DEPTHS

CROLL ETAL. IN PREP.
*  QOur three WASP-43b Ks-band eclipse depths are roughly consistent (with an outlier
at less than 2-sigmal.

Epoch Number

ECLIPSE DEPTHS OF OUR THREE WASP-43 KS-BAND ECLIPSES. THE DASHED
LINES INDICATE THE WEIGHTED MEAN, WHILE THE DOTTED LINES INDICATE
THE 1-SIGMA ERRORS.



WASP-43B.: REPEATABILITY OF ECLIPSE DEPTHS
CROLL ET AL. IN PREP.

* There is a concern of systematically overestimated eclipse depths (Rogers et al.
2013).

—&— Croll et al.
L] Others

2 3
Epoch Number

ECLIPSE DEPTHS OF OUR THREE WASP-43 KS-BAND ECLIPSES; RED POINTS ARE
FROM WANG ET AL. (2013), ZHOU ET AL. (2014), CHEN ET AL. (2014). THE
DASHED LINES INDICATE THE WEIGHTED MEAN, WHILE THE DOTTED LINES
INDICATE THE 1-SIGMA ERRORS.



WHICH REFERENCE STARS?

» The reference stars we use for our various Staring Mode data-sets.

© The best stars are similar in magnitude or brighter. = Target Star

* The colour of the reference stars are not
particularly important.

« Used Reference Stars

«  Excluded Reference Stars
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LIMITING SYSTEMATIC OF NEAR-INFRAED DATA

CROLL ET AL. (2015)

* The great number of reference stars allows us to explore the limiting systematics of
near-infrared data.

* For faint stars our data is near the noise limit once all sources of error are taken
iInto account.

WASP-12 Ks #1

WASP-3 Ks #2
KIC 1255 Ks #2
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KIC 1255'Ks PRDSx1.7
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10* 10°
# of ADU in the Aperture after sky subtraction

RMS OF ALL THE REFERENCE STARS OF WASP-12, QATAR-1, KELT-1, WASP-3
AND KIC 1255 IN THE KS-BAND.



MULTIWAVELENGTH OBSERVATIONS OF THE CANDIDATE
DISINTEGRATING SUB-MERCURY KIC 1255B
CROLL ET AL. 2014

o : Image Credit: NASA/JPL-Caltech
OUR NEAR-INFRARED PHOTOMETRY ALLOWS US TO CONSTRAIN THE PARTICLE SIZES
IN THE COMETARY TAIL.



NEAR-INFRARED DETECTORS

Existing near-infrared detectors (JHK)
usually use mercury cadmium telluride
(HgCdTe; MerCad Telluride) detectors

cooled to -190 Celsius.

Indium Gallium Arsenide (InGaAs) are a
much cheaper alternative (10-20x
cheaper; they only have to be cooled to
-30 to -60 Celsius) that have been
developed for military/night-vision
purposes. Recently, lower noise
versions of these cameras have begun
to be developed that may be suitable for
astronomical observations.
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BoTTOM: OUR INGAAS CAMERA.



THE DREAM TEAM

RIGHT: MYSELF

BoTTOM: ROB SIMCOE



WALLACE OBSERVATIONS OF THE TRANSIT OF
WASP-33

* We attempted (and failed) to detect .
the 1% transit depth of the E E
bright star WASP-33 (J~7.9). |

* (Growing pains associated with using
these higher read-noise and dark “E .
current detectors. .

ToP: INGAAS OBSERVATIONS OF WASP-33
AND A NEARBY REFERENCE STAR.

BoOoTTOM: INGAAS OBSERVATIONS OF THE TRANSIT OF WASP-33. WE FAIL TO
DETECT THE TRANSIT.



THE PROMISE OF INGAAS DEVICES
SULLIVAN, CROLL & SIMCOE (2013, 2014)

HgCdTe devices display low read noise (~10 e-/read), and very low dark current
(<1 e-/sec/pixel) at -190 C.

Our original device displayed reasonable read noise (~50 e-/read), but high dark
current (~800 e-/sec/pixel) at -20 C that did not improve as we cooled the
device.

Our next generation chip displayed competitive read noise (~50 e-/read) and
competitive dark current (~160 e-/sec/pixel) such that the sky will limit the
resulting precision for small telescopes.
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LEFT: LOW DARK CURRENT AND RIGHT: LOW READ NOISE FOR OUR LATEST
INGAAS CHIP.






BROWN DWARF VARIABILITY & SEARCHING FOR

EARTH-SIZED PLANETS IN THE HABITABLE ZONE

= 29 nights of observations with the Perkins 1.8 m telescope at Lowell of an L-dwarf and an
L/T transition BD.

*  Our photometry will have the sensitivity to detect Earth-sized planets in the habitable zone;
only with rocky planets about ultra-cool dwarfs will atmospheric features/biomarkers be
able to be detected with JWST with just a few weeks of observing time (Belu et al.
2013).

* The opportunity to probe variability and the evolution of variability for L/T transition BDs,
where the variability is believed to arise from cloud clearings, to L dwarfs where the
source of variability is less clear (clouds or spots?).
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LEFT:. 5% J-BAND VARIABILITY THAT EVOLVES FROM NIGHT-TO-NIGHTOF AN L/T
TRANSITION BD, AND RIGHT: 1% CONSTANT VARIABILITY IN THE KEPLER-BAND OF
AN L1 DWARF.




WASP-12b

1
Epoch Number

Accurate ground-based near-infrared
- photometry.
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Do what you want! For me this was some * Promising results from InGaAs
unique public outreach initiatives. cameras on small telescopes.




WHY THE NEAR-INFRARED?

» The near-infrared J, H & K-bands are windows in the water opacity.

» (Observations in these wavelengths are thus expected to probe much deeper
depths and much greater pressures in the atmospheres of hot Jupiters.

Partridge & Schwenke
Barber et al. (BT2)
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LEFT: THE NEAR-INFRARED RIGHT: J, H & KS-BAND OBSERVATIONS
J, H & Ks-BANDS ARE PROBE MUCH DEEPER PRESSURES
HOLES IN THE WATER AND THUS DEEPER DEPTHS IN THE
OPACITY. FIGURE FROM ATMOSPHERES OF HOT JUPITERS
SHABRAM ET AL. (2010). THAN THE SPITZER/IRAC

WAVELENGTHS. FIGURE FROM
BARMAN ET AL. (2008).



OVERVIEW OF K-BAND HoT JUPITER
SECONDARY EcLIPSE DETECTIONS
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BRIGHTNESS TEMPERATURE OF THE THERMAL EMISSION OF HOT JUPITERS IN THE K
BAND. DETECTIONS FROM: DE MoOoOIJ & SNELLEN (2009), ROGERS ET AL. (2009),
GILLON ET AL. (2009), ANDERSON ET AL. (2010), GIBSON ET AL. (2010), CROLL ET
AL. (2010A,B,2011, 2015), DE MoolJ ET AL. 201 1, CACERES ET AL. 201 1, GILLON
ET AL. (2012), ZHAO ET AL. (2012A,B,2014).



OVERVIEW OF NEAR-IR (JHK) DETECTIONS
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THE RERADIATION FACTOR (f) OF THE THERMAL EMISSION OF HOT JUPITERS IN
THE JHK BANDS. BROADBAND DETECTIONS FROM: DE MOOILJ & SNELLEN (2009),
ROGERS ET AL. (2009), GILLON ET AL. (2009), ANDERSON ET AL. (2010), GIBSON
ETAL. (2010), CROLL ET AL. (2010A,B,201 1, IN PREP.), DE MOOLJ ET AL. 2011,

CACERES ET AL. 2011, GILLON ET AL. (2012).



CORRELATION OF TEMPERATURE

INVERSIONS WITH ACTIVITY
KNUTSON ET AL. (2010)

- Acthive: .
4.8 Lack of N
- Temperature
-2.Ur inversions
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Inactive:
Temperature |
inversions -

-0.1 0.0 0.1
3.6 - 4.5 Micron Slope vs. Best-Fit Blackbody (%)




OVERVIEW OF NEAR-IR (JHK) DETECTIONS
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THE RERADIATION FACTOR (f) VERSUS THE CA Il H & K ACTIVITY INDEX: DE MoolLJ
& SNELLEN (2009), ROGERS ET AL. (2009), GILLON ET AL. (2009), ANDERSON ET
AL. (2010), GIBSON ET AL. (2010),, CROLL ET AL. (2010A,B,201 1, IN PREP.), DE

MoolJ ET AL. 2011, CACERES ETAL. 2011.




OVERVIEW OF NEAR-IR (JHK) DETECTIONS
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THE RERADIATION FACTOR (f) VERSUS THE CA Il H & K ACTIVITY INDEX: DE MoolLJ
& SNELLEN (2009), ROGERS ET AL. (2009), GILLON ET AL. (2009), ANDERSON ET
AL. (2010), GIBSON ET AL. (2010),, CROLL ET AL. (2010A,B,201 1, IN PREP.), DE

MOOIJETAL. 2011, CACERES ETAL. 2011.




OVERVIEW OF NEAR-IR (JHK) DETECTIONS
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NEAR-INFRARED RERADIATION FACTOR (f) VERSUS THE RATIO OF THE 4.5 TO 3.6
MICRON RERADIATION FACTORS (A PROXY FOR TEMPERATURE INVERSIONS).
SPITZER RESULTS FROM: FRESSIN ET AL. (2010), O'DONOVAN ET AL. (2010),
TODOROY ET AL. (2010), CAMPO ET AL. (201 1), BEERER ET AL. (201 1), COWANET
AL. (2012), BLEcIC ET AL. (2012), ANDERSON ET AL. (2012).




OVERVIEW OF NEAR-IR (JHK) DETECTIONS
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NEAR-INFRARED RERADIATION FACTOR (f) VERSUS THE RATIO OF THE 4.5 TO 3.6
MICRON RERADIATION FACTORS (A PROXY FOR TEMPERATURE INVERSIONS).
SPITZER RESULTS FROM: FRESSIN ET AL. (2010), O'DONOVAN ET AL. (2010),
TODOROY ET AL. (2010), CAMPO ET AL. (201 1), BEERER ET AL. (201 1), COWANET
AL. (2012), BLEcIC ET AL. (2012), ANDERSON ET AL. (2012).
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PREPARING FOR THE FUTURE OF GROUND-BASED,
NEAR-INFRARED OBSERVATIONS

» The techniques discussed here are laying the ground-work for current & future
Instruments/telescopes.
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