A New High-Contrast Imaging Program for Exoplanetary Science at Palomar

Sasha Hinkley
Sagan Fellow, Caltech
Sagan Fellowship Symposium, Nov. 12th 2009

Ben R Oppenheimer
Doug Brenner
Remi Soummer (STScI)
Anand Sivaramakrishnan
Neil Zimmerman

Lynne Hillenbrand
Justin Crepp
Rich Dekany
Antonin Bouchez

Lewis Roberts
Chas Beichman
Gautam Vasisht
Laurent Pueyo
Mike Shao
Rick Burruss
Jenny Roberts

Photo by Scott Kardel
Transits

Radial Velocity
Transits
Radial Velocity
Direct Imaging
Recent Direct Imaging

HR 8799 b, c, d:
- 68, 38, 24 AU
- 7, 10, 10 M$_{\text{Jup}}$
- 60 Myr system

Fomalhaut b:
- 119 AU
- Few M$_{\text{Jup}}$

Marois et al. (2008)

Kalas et al. (2008)
Recent Direct Imaging

HR 8799 b, c, d:
- 68, 38, 24 AU
- 7, 10, 10 M_{Jup}
- 60 Myr system

Fomalhaut b:
- 119 AU
- Few M_{Jup}

Marois et al. (2008)
Kalas et al. (2008)
High Contrast is Needed for Direct Imaging

Large planets are 10^7 (that's 10,000,000!) times fainter than their host star.
High Contrast is Needed for Direct Imaging

Large planets are 10^7 times fainter than their host star.

Challenges to High Contrast Imaging

1. Use Adaptive Optics to stabilize the starlight.
High Contrast is Needed for Direct Imaging

Large planets are 10^7 times fainter than their host star.

Challenges to High Contrast Imaging

1. **Use Adaptive Optics to stabilize the starlight.**

2. **Block out this stable image with a coronagraph.**
High Contrast is Needed for Direct Imaging

Large planets are 10^7 (that's 10,000,000) times fainter than their host star.

Challenges to High Contrast Imaging

1. Use Adaptive Optics to stabilize the starlight.

2. Block out this stable image with a coronagraph.

3. Correct Any residual uncorrected starlight.
Step 1: Starlight Stabilization with Adaptive Optics
Step 2: Coronagraphy

Focal Plane Mask:
5.37λ/D at 1.65 µm,
.37 arcsec on sky:
hole diameter 1332 microns

Lyot stop:
2% downsized from primary
Beam size at stop 3.8mm

Apodizing mask:
Chromium microdots (1 µm) on glass

Soummer et al. (2005)
Correlated Speckle Noise Limits Sensitivity

40-minute H-band image sequence:
 - AO on
 - Coronagraphically-occulted

Correlated speckle noise: the greatest obstacle to ground-based exoplanet detection.

Averaging does not work

Hinkley et al. (2007)
Step 3: Speckle Suppression Through Chromaticity

Plan: Utilize the chromatic nature of speckles with a IFS.

Enables differentiation between speckles and companions

Automatically provides spectra of any companions.

Simulation courtesy of Remi Soummer & James Lloyd
Project 1640: IFU+Coronagraph at Palomar

• Science Camera: IFU covering \(\lambda = 1.05 - 1.75 \mu m \) (J to H bands)

• Diffraction-limited Apodized Pupil Lyot Coronagraph (APLC)

• Separate (2nd Stage) IR fine guidance system

• Designed to interface with the Palomar AO system (PALAO)

• Only project like it in the Northern Hemisphere.
Integral Field Spectrograph

- Collimating optics
- JH prism
- Lenslet array

Array of 270 x 270 microlenses 75 µm pitch. Two powered faces.

Rockwell Hawaii-II 2048x2048 pixel HgCdTe array

Property	Project 1640 IFU + Coronagraph
Wavelength coverage | 1.05 - 1.75 µm, ∆λ = 0.7 µm
Central wavelength | 1.403 µm
IFU FOV | 4200 mas
Platescale | 21 mas/lenslet
Total spectra | 200 x 200 = 40,000
Pixels per spectrum | 3.2768 x 32
∆λ per 2 pixels | .044 (.7µm/32 pix)
R = λ/∆λ | 32
Lenslet Pitch | 75 µm (chosen for manufacturing issues)
Input f/ratio from coronagraph for λ/2D Spaxels at 1.0 µm | f = 143.21
Focal Plane Mask size | 5.6 λ/d
Optimal coronagraph wavelength | 1.65 µm
Apodizer throughput | 51%
P1640 Coronagraph & Wave Front Calibration System

Wave Front Calibration system (2010):

- Interferometer nearly identical to GPI
- Designed to achieve 1nm RMS wave front error measurement at 1Hz
- Dynamic Control of wave front errors.
Laboratory Data

Monochromatic 1330 nm light source

Broadband white light source
Data

Data cube spans 1.05 - 1.75 µm.
Stellar Companion to a Nearby A-star

- Photometry
- Astrometry
- CPM
- Orbital motion
- Spectrum

$1.25\mu m$

$1.58\mu m$

$1.73\mu m$

Hinkley et al. (2009) submitted
Stellar Companion to a Nearby A-star

- Photometry suggests ≈0.16 solar masses.
- Mass ratio $q \sim 0.07$

Hinkley et al. (2009) submitted
Stellar Companion to a different Nearby A-star

- Are unseen low mass companions the source of anomalously high X-ray counts from A-stars?

- Common parallax obtained
- Anomalously high ROSAT brightness
- M3-M4 companion

Zimmerman et al. (2009) in prep
Stellar Companion to a **different** Nearby A-star

Data cube spans 1.05 - 1.75 µm.
Speckle Suppression with **LOCI**
(*Locally Optimized Combination of Images*)

See LaFrenière et al. (2007)

Images courtesy of Laurent Pueyo
Performance

Speckle suppression through LOCI seems to gain 2-3 magnitudes.

Still some sensitivity issues.

Image courtesy of Justin Crepp
Gemini Planet Imager

MEMS Extreme-AO + apodized pupil coronagraph

IFS (1-2.4 μm), $R=45$, 2.8"x2.8" FOV

Dual channel polarimetry

Wave front calibration system (southern hemisphere)
First light: 2011

SPHERE (VLT)

Extreme-AO (41x41 actuator) + coronagraph

Differential imaging (Y, J, H, Ks)

IFS (0.95-1.65 μm)
$R=30$, 1.8" x 1.8"FOV

Visible Imaging Polarimeter
First light: 2011
Palomar AO Upgrade: “PALM-3000” (2010)

- 3,388 Actuator Deformable Mirror.
- High-order Wave Front Sensor (62 x 62 Shack-Hartmann).

High Strehl Preview:

PALM-241 1.5 m Subap Data

Serabyn et al. (2007)
Ongoing P1640 Observations

- Opportunities: planet searches, binary star studies, and planetary science.
- Data cubes obtained for at least 100 stars.
- Data cube extraction pipeline is mature.
- At least 500 GB of data.

Observing Plan:

1. Initial survey with current PalAO system. Magnitude limit: 13th
2. Key Project Survey with PALM3000 and Calibration system (2010-12). Magnitude limit: 8th

1.34 μm 1.55 μm 1.67 μm