Extra-solar Weather

Ian Dobbs-Dixon
University of Washington, Seattle
Outline

- Dynamical Modeling Methodologies
 - Hydrodynamic Models
 - Radiative Models

- Giant Planet Meteorology
 - Thermal inversions
 - Opacity variations
 - Viscous effects
 - Variability
 - Vertical mixing efficiency
 - Eccentric planets
Dynamical Methods

Completeness

- Equivalent Barotropic and Shallow Water (2D)

- Primitive equations (~3D)

- Navier-Stokes equation (2D)
 - Burkert et al. 2007

- Full Navier-Stokes equations (3D)

Resolution
Radiation Transfer Methods

‘Completeness’

- Relaxation methods (Newtonian heating)

- 2/3D one temperature flux-limited radiative diffusion

- 3D FLD + decoupled thermal and radiative components

- 1D (radial) wavelength-dependent radiative transfer
 - Showman et al. (2009)
3D Navier-Stokes, flux limited diffusion and decoupled thermal and radiative components

\[\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{\nabla P}{\rho} + \mathbf{g} - 2\Omega \times \mathbf{u} - \Omega \times (\Omega \times \mathbf{r}) + \nu \nabla^2 \mathbf{u} + \frac{\nu}{3} \nabla (\nabla \cdot \mathbf{u}) \]

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \]

\[\mathbf{F} = -\lambda \frac{c}{\rho \kappa_R(T, P)} \nabla E_R \]

\[\frac{\partial E_R}{\partial t} + \nabla \cdot \mathbf{F} = \rho \kappa_P(T, P) [B(T) - cE_R] \]

\[\left[\frac{\partial \epsilon}{\partial t} + (\mathbf{u} \cdot \nabla) \epsilon \right] = -P \nabla \cdot \mathbf{u} - \rho \kappa_P(T, P) [B(T) - cE_R] + \rho \kappa_*(T, P) F_* e^{-\tau_*} + \Phi_\nu \]

Ian Dobbs-Dixon, University of Washington, Seattle, WA
Absorption vs. Emission Opacities

\[\kappa = \frac{\int \kappa_\nu B_\nu (T) \, d\nu}{\int B_\nu (T) \, d\nu} \]

\(0\) \(5000\) \(10000\) \(15000\) \(20000\) \(25000\) \(30000\) \(35000\) \(40000\)

\(0\) \(5\times 10^{-27}\) \(5\times 10^{-26}\) \(5\times 10^{-25}\) \(5\times 10^{-24}\) \(5\times 10^{-23}\) \(5\times 10^{-22}\) \(5\times 10^{-21}\) \(5\times 10^{-20}\) \(5\times 10^{-19}\) \(5\times 10^{-18}\)

\(\nu\) (cm\(^{-1}\), molecule\(^{-1}\))

B (6117) \(B\) (1400)

\(0\) \(500\) \(1000\) \(1500\) \(2000\) \(2500\) \(3000\) \(3500\) \(4000\) \(4500\) \(5000\)

\((K_*/K_P)^{1/4}\)

\(0\) \(0.5\) \(1.0\) \(1.5\) \(2.0\) \(2.5\) \(3.0\)

\(T\) (K)

P = 3000 mb \(P = 1000\) mb \(P = 300\) mb \(P = 30\) mb \(P = 3.0\) mb \(P = 0.3\) mb

Ian Dobbs-Dixon, University of Washington, Seattle, WA
3D Flux-Limited Radiation Diffusion

\[
\frac{1}{c} \frac{\partial I_\nu}{\partial t} + \hat{k} \cdot \nabla I_\nu + \rho \kappa_\nu I_\nu = \rho \left(\frac{j_\nu}{4\pi} + \kappa_\nu^{\text{scal}} \Phi_\nu \right)
\]

- Slowly varying in space/time:

\[
R = \frac{1}{\rho \kappa} \frac{|\nabla E|}{E}
\]

\[F \propto \lambda(R) R\]

\[
F = -\lambda \frac{c}{\rho(\kappa + \sigma)} \nabla E
\]

Accurate in the limits

\[
F = -\frac{c}{3\rho\kappa} \nabla E = -\frac{4acT^3}{3\rho\kappa} \nabla T
\]

\[F = cE\]
$P_{\text{rot}} = P_{\text{orb}} = 3.52 \text{d, } T_{\text{star}} = 6117 \text{K}$
Photospheric Velocities
Observed Inversion (HD 209458b)

Richardson et al. (2003)
Knutson et al. (2007c)

- $\rho_p = 0.1, \kappa_a = 0.0 \text{ cm}^2/\text{g}$
- $\rho_p = 0.3, \kappa_a = 0.0 \ "$
- $\rho_p = 0.5, \kappa_a = 0.0 \ "$
- $\rho_p = 0.1, \kappa_a = 0.1 \ "$
- $\rho_p = 0.3, \kappa_a = 0.1 \ "$
- $\rho_p = 0.5, \kappa_a = 0.1 \ "$

Ian Dobbs-Dixon, University of Washington, Seattle, WA
Outer Temperature Structure

\[\kappa_j J - \kappa_B B = 0 \]

\[\frac{\partial K}{\partial m} = \chi_H H \]

\[T^4 = \frac{3}{4} T_{\text{eff}}^4 \kappa_j \left(\frac{1}{3 f_k} \tau_H + \frac{1}{3 f_H} \right) + \frac{\kappa_j}{\kappa_B} W T^*_4 \]

Hubeny et al. (2003)

Ian Dobbs-Dixon, University of Washington, Seattle, WA
T-Profile Dichotomy?

Fortney et al (2007)

Ian Dobbs-Dixon, University of Washington, Seattle, WA
HD209458b

\[\nu = 10^{10} \]

\(T \) (K)

\(P \) (bar)

sub-solar

anti-solar
Opacity Variations

Zahnle et al 2009
Opacity Variations

\[\tau_{\text{cool}} = \frac{E_{\text{thermal}}}{\sigma T^4} \]

\[\tau_{\text{cross}} = \frac{\pi R_p}{2 v_d} \]

\[\tau_{\text{cool}} \approx \tau_{\text{cross}} \]

\[T_n = \left(\frac{4v c_d^2}{3 \pi \kappa d \sigma R_p} \right)^{1/4} \]

Ian Dobbs-Dixon, University of Washington, Seattle, WA

Dobbs-Dixon and Lin (2007)
Opacity Variations

\[\tau_{\text{cool}} = \frac{E_{\text{thermal}}}{\sigma T^4} \]

\[\tau_{\text{cross}} = \frac{\pi R_p}{2 v_d} \]

\[\tau_{\text{cool}} \approx \tau_{\text{cross}} \]

\[T_n = \left(\frac{4 v c_d^2}{3 \pi \frac{R_p}{\kappa_d \sigma}} \right)^{1/4} \]

Freedman Opc

Interstellar Opc

Ian Dobbs-Dixon, University of Washington, Seattle, WA

Dobbs-Dixon and Lin (2007)
Viscosity

- Momentum eq.
 \[\mathbf{u} \cdot \nabla \left(\frac{1}{2} |\mathbf{u}|^2 + w + \phi_y \right) = \]
 \[\mathbf{u} \cdot \nabla T S + \mathbf{u} \cdot \nu \nabla^2 \mathbf{u} + \mathbf{u} \cdot \frac{\nu}{3} \nabla (\nabla \cdot \mathbf{u}) \]

- Add thermal and radiation energy equations
 \[\mathbf{u} \cdot \nabla E_B = \rho^{-1} \left[\Phi_v - \nabla \cdot \mathbf{F} + S_\star \right] + \]
 \[\mathbf{u} \cdot \nu \nabla^2 \mathbf{u} + \mathbf{u} \cdot \frac{\nu}{3} \nabla (\nabla \cdot \mathbf{u}) \]

- Radiation determines behavior along streamlines
 \[\mathbf{u} \cdot \nabla E_B = \rho^{-1} \left[S_\star - \nabla \cdot \mathbf{F} \right] \]

Ian Dobbs-Dixon, University of Washington, Seattle, WA
Viscosity

- Momentum eq.
 \[\mathbf{u} \cdot \nabla \left(\frac{1}{2} |\mathbf{u}|^2 + w + \phi_y \right) = \]
 \[\mathbf{u} \cdot T \nabla S + \mathbf{u} \cdot \nu \nabla^2 \mathbf{u} + \mathbf{u} \cdot \frac{\nu}{3} \nabla (\nabla \cdot \mathbf{u}) \]

- Add thermal and radiation energy equations
 \[\mathbf{u} \cdot \nabla E_B = \rho^{-1} \left[\Phi_v - \nabla \cdot \mathbf{F} + S_\star \right] + \]
 \[-\mathbf{u} \cdot \nu \nabla^2 \mathbf{u} + \mathbf{u} \cdot \frac{\nu}{3} \nabla (\nabla \cdot \mathbf{u}) \]

- Radiation determines behavior along streamlines
 \[\mathbf{u} \cdot \nabla E_B = \rho^{-1} \left[S_\star - \nabla \cdot \mathbf{F} \right] \]
Variability

Grillmair et al 2009

Spectroscopy (this paper)
Photometry (Charbonneau et al. 2008)

P = 0.3, \(\kappa \approx 0.0 \)
P = 0.1, \(\kappa \approx 0.0 \)
P = 0.15, \(\kappa \approx 0.035 \)

Agol et al 2008

HD189733b Transmission

Ian Dobbs-Dixon, University of Washington, Seattle, WA

Madhusudhan and Seager 2009
Surface and radial shear

-4 km/s +4 km/s

Ian Dobbs-Dixon, University of Washington, Seattle, WA
Variability

Ian Dobbs-Dixon, University of Washington, Seattle, WA
Vertical Mixing

Fortney et al (2007)

Zahnle et al 2009

Ian Dobbs-Dixon, University of Washington, Seattle, WA
Vertical Mixing

\[K_{zz} = V_{r,rms} H_p \]

Eccentric Planets
Eccentric Planets

Ian Dobbs-Dixon, University of Washington, Seattle, WA
Eccentric Planets

3.52d
Conclusions

- Numerical treatment of radiation and dynamics must be included as coupled model.
- Both opacity and dynamically derived temperature inversions play roles in dynamics and spectra. The location of stellar energy deposition governs efficiency of redistribution to the night-side.
- Three jets (one equatorial and two mid-lat.) are common features, with width decreasing with increased planetary rotation.
- Changing viscosity drastically alters streamlines, changing overall thermal structure.
- Dynamically driven variability may cause variations transit spectra, but variation in hemispherically averaged phase curves will be difficult.
- Vertical mixing throughout the atmosphere is significant. Potential for maintaining species aloft.
- Continuing obs. programs, and coupling of dynamical/spectral models will allow tighter constraints on dynamical processes: eccentric planets, multiple (and continuous) observations, lower masses, younger planets, thermal forcing.