ExoZodical Emission and Challenge and Opportunity for The Detection of ExoPlanets

C. Beichman
13 November 2009
Sagan Program Workshop

With lots of help from A. Tanner (Georgia State), G. Bryden (JPL), S. Lawler (Wesleyan/UBC), R. Akeson (NExScI), D. Ciardi (NExScI), C. Lisse (JHU), Mark Wyatt (Cambridge)
Debris Disks and Formation of Planets

- Prediction of debris disks by Witteborn et al (Icarus 1982)
 - “Accretion models of planet formation and the early cratering history of the solar system suggest that planet formation is accompanied by a cloud of debris resulting from accumulation and fragmentation. A rough estimate of the infrared luminosities of debris clouds is presented for comparison with measured 10-micron luminosities of young stars. New measurements of 13 F, G, and K main-sequence stars of the Ursa Major Stream, which is thought to be about 270-million years old, place constraints on the amount of debris which could be present near these stars.”

- IRAS discoveries followed in 1984 (Aumann, Gillett et al)
- Fractional luminosity, Ld/L*, a convenient metric
 - 1-10^−2 for protostars & classical T Tauri stars
 - 10^−3 to 10^−4 for brightest, youngest (?) disks --- accessible to non-IR
 - 10^−4-10^−5 for typical disks --- IRAS& ISO for early Sp Type → Spitzer
 - 10^−6-10^−7 for weak disks like solar system
Solar System’s Debris Disk

Inner System: Asteroid Belt
T>150K, refractory

Outer System: Kuiper Belt
T<150 K, volatile

Plot prepared by the Minor Planet Center (2002 July 20).

Plot prepared by the Minor Planet Center (2006 Feb 18).
Properties of Disks

Asteroid Belt 150-300 K

Kuiper Belt 20-100 K
Collisions as Dust Source

Collision of planetesimals

Kenyon & Bromley 2004
Spitzer Limits to Kuiper Belts

- $L_d/L_\star \sim 10^{-5} - 10^{-6}$ for cold Kuiper Belt dust (30-60 K, >10 AU; 70 µm) for roughly 14% of stars.
- No statistical difference between debris disk incidence for stars with or w/o planets.
- Stars with planets may have brighter disks.
- Planets sculpt disks (rings)

Bryden et al. 2009

![Graph showing distribution of L_{disk}/L_\star at 70 µm between stars with and without planets.](image_url)
Spitzer Limits In the Habitable Zone

- Warm dust (70-150 K) located outside iceline ~100 Zodi
- Hot dust in Habitable Zone (10 µm) @ 1,000 zodi (3 σ) for 1-2% of mature stars
- Only 1-2 systems with strong HZ disk at Spitzer photometric levels

Limits to Fractional Disk Luminosity (3 sigma)

Log (Ld/L*) in Solar System Units (1E-7)
Distance from star [AU]
Spectral Type
K3 K2 K0 K0 K0 G6 G5 G4 G2 G0 G0 F9 F7 F7 F6 F3 F2 F1
HD190470 HD154577 HD117043 HD115617 HD45184 HD38858 HD10647 HD10647b
HD10647 HD219623 HD110897 HD155999 HD1461 HD870 HD199260 HD76653
HD160032 HD90089
Disk Fraction Declines with Age: Primordial \rightarrow Debris

- Spitzer surveys of AFGK stars (Rieke 2004; Siegler 2007) confirm and extend ISO results (Habing; Sylvester; Weinberger; Dominik and Decin)
- Young, hot disks common, but rare beyond 100 Myr (MIPS/FEPS) \rightarrow formation of planetesimals and planets common evolutionary feature $<$100Myr
- Sporadic later outbursts due to collisions (Vega; Su 2004)
Evolution of Hot Dust Disks

- Long term decline due to dissipation at few AU implies mature systems may be clean (few Zodi)
- Hot dust disk in mature stars may be LHB analogs

Wyatt et al. 2006

What we can measure with IRS

Ages of our sample stars

Our solar system

TPF Limit

Wyatt et al. 2006
Planets Affect Their Disks

- Planets as small as Earth create resonant structures in EZ clouds (wakes and rings).
- Structures can masquerade as planets for imaging systems with low resolution (coronagraphs) or low information density (interferometers).
- Structures on eccentric orbit would produce variable emission.

Stark and Kuchner 2009
Fomalhaut’s Disk Hints at Planets

• A3V star: 7.7 pc, 200 Myr
• Submm suggests disk perturbed by planet, $\varepsilon=0.07$
• MIPS resolves SE ansa into ring with azimuthal variations from warmer dust at periastron
• 350 μm ring displaced 8 AU
 – Excess material at apocenter due to slow orbital motion
 – Perturber: 86 AU orbit and $e=0.07$, $M>>M_{\text{Earth}}$
Kalas et al (2009) directly detect Fomalhaut-b at 115 AU, $e \sim 0.13$

Common Proper Motion and evidence of orbital motion (1.4 AU in 1.7 yr) → $P = 872$ yr

Quasi-dynamical mass: $M \lesssim 3$ MJup to avoid disrupting/spreading disk
The Exceptional Star HD 69830

6th mag K0 V star
12 pc distant, Age 2-5 Gyr
3 Neptune Sized Planets
@ 0.08, 0.16, 0.63 AU
ecc < 0.1
Asteroidal Composition

- Small (<1 µm) grains in 1 AU ring (350 K >> T_{BB})
- Asteroid debris different from comets 9P/Tempel 1 and C/ Hale-Bopp, or comet-dominated YSO HD 100546 (Lisse et al 2007)
 - Crystalline pyroxenes & olivines, forsterite
 - Water ice (?)
 - Carbonates: siderite and magnesite
 - No Amorphous
 - No water gas, PAHs, phyllosilicates, or sulfides
- Spitzer HiRes shows no evidence for gas emission

Lisse et al 2007
Disk Location and Extent

- SED → material at 1 AU, 2:1 or 5:2 resonance outside the most distant planet
- VLTI/MIDI resolves emission, 0.25 -1 AU (Smith, Wyatt and Haniff 2009)
- Perhaps 30 km radius P/D asteroid disrupted @ 1 AU after perturbation by planet, trapped in 2:1 resonance with HD69830d.
- Orbital time scale → possibility of variability on < 1yr
HD69830: No Photometric Variability

• Constant over 24 years (IRAS→Spitzer)
 – IRAS 25 µm (1983.5): 100 ± 26 mJy
 – MIPS 24 µm (2007): 70 ± 12 mJy
 – Δ=30 ±28 mJy or <40%

• Constant over 4 years
 – 60 images w. IRS Peakup Array at 22 µm
 – Some referenced to nearby star HD68146
 – Star+disk constant to ~1%, excess<3%
• 6 independent spectra over 4 year baseline
• χ^2 consistent with no significant variations over 4 years at few % level
Lack of Variability Limits
Clumpiness & Eccentricity

• Put resonant clump containing 10% of total excess at 1 AU with $\varepsilon = (0.1, 0.2, 0.5$ and 0.8)
• Planet eccentricity =0.03,0.1,0.07 (?)
Variability Limits

• With material on orbit with $\varepsilon=0.1$, 4 years of Spitzer data set limits <10% F_{total} of clumpiness
Variable Emission From Transitional Disk

- Monthly variations in photometry & silicate feature at 20-60% level
- Variable heating of inner disk due to variable accretion rate?
- Perturbations of disk by planet at inner edge of disk (0.2 AU sublimation radius, P=3-4 weeks)?

Muzzerole et al 2008
Variable Disk Emission

- Accreting T Tauri stars show variable silicate emission on monthly time scale --- possible due to shadowing in disk (Bary et al 2009)
The ExoZodi Challenge
To Planet Detection

Stars are a billion times brighter ...
...than the planet

...hidden in the glare.
Like this firefly.

Hidden in the Exo Zodi Fog
The Problem for Earth-Detection

- Total ExoZodi (EZ) ~300x planet signal for Solar System Zodiacal cloud
- Photon noise from (EZ) can overwhelm planet
- Signal within single pixel (~λ/D) significant for >10 zodi for either visible or IR
Keck Interferometer: The Next Step

• Spitzer (even JWST) limited by photometric accuracy
• Interferometers null star signal to reveal disk: 10 mas resolution with Keck \rightarrow 0.1-1 AU
• Keck survey of nearby stars for ExoZodi
 –Hinz (UofA), Kuchner (GSFC), Serabyn (JPL)
• Known disks & nearby main sequence stars
Observing Summary

- 8 runs Feb. ‘08 – Jan. ‘09: 32 interferometer nights
- 44/46 targets observed
- No excess for 40 targets ($\Delta F/F<0.1-1\%$)
- 3-5× improvement over Spitzer photometry (0.5-2%)
51 Ophiuchus: A β Pictoris Analog Measured with the Keck Interferometer Nuller

Simultaneous fit to Spitzer, MIDI, and Keck Nuller data
10 parameter model with 2 dust clouds:

1) inner ring of large grains ("birth ring")

2) small particles (maybe β meteoroids)

Stark et al. 2009

51 Ophiuchus
LBTI ExoZodi Science

Nulling observations with the MMT (Phil Hinz)

Detection of a 390±70 zody dust disk around β Leo and a non-detection around ο Leo with an uncertainty of 50 zodi.

- MMT nulling experiments indicate detection of disks with an uncertainty of 25-75 zodi.
- The larger apertures and faster correction of the LBT will improve this limit by a factor of 6.
- LBTI could characterize debris disks with an uncertainty of ~3-10 zodi around nearby stars.
- Planned survey of 60 stars once LBTI becomes operational.
LBTI: Next2 Step

- Lower background of LBTI (wrt KI) should enable LBTI to push down to 10 zodi (5-10x better than KI)
- Starting in 2012, LBTI will undertake a survey of 60 nearby stars for zodiacal dust to 3-10 times our own planetary system
Ground-based Zodi Survey Prospects

- Space-based (Spitzer, JWST) cannot get below 1000 Zodi at 10 µm
- Ground based observations at few hundred Zodi, 3-4x Spitzer
- LBTI will go below 100 SS, perhaps as low as 10 SS, approaching TPF limit
- Modest extrapolation with theory may satisfy concerns
The Next³ Step: A Dedicated Space Mission

- 5-10 µm interferometry from space can reach 1 zodi
 - Pegase separated s/c interferometer
 - FKSI interferometer on a stick being (Danchi et al)
- Visible coronagraphy (Trauger, Stapelfeldt)
 - High contrast imaging with ~2 m telescope at 1-5 zodi as well as imaging nearby Jupiters

Stapelfeldt et al 2007
The Next∞ Step: Imaging And Characterizing Earths

TPF-Coronagraph

Darwin/
TPF-Interferometer

External Occulter (TPF-O)