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Vega Model (i = 5 degrees)

Vega Model (i = 90 degrees)

Observed  SED
Bohlin and Gilliland (2004) 

rotation increases with �, in the sense that the configurations
corresponding to larger values of � have a greater difference
between the axial and surface equatorial rates of rotation (see
x 2.1).

As Figure 2b makes evident, the radiative luminosities of
these models are diminished relative to the luminosity L0 of a
nonrotating 1 M� star. This is a well-known consequence of in-
cluding rotation in the determination of the equilibrium stellar
structure (see, e.g., Clement 1979; Bodenheimer 1971). In the re-
sults shown in Figure 2, the reduction in L is larger for differ-
entially rotating models than it is for models that are uniformly
or nearly uniformly rotating. A model with � ¼ 0 rotating at the
break-up rate (� ¼ 1) has L/L0 ¼ 0:78, while an � ¼ 2 model
with � ¼ 2:42 has L/L0 ¼ 0:15, a reduction of more than a factor
of 6 from the nonrotating value. Much of the reason for this be-
havior lies in the effect of rotation on the thermodynamic condi-
tions in the deep, energy-producing regions of the stellar interior.
For these 1M� models, the contribution of the centrifugal force
to supporting material against gravity enables the star to emulate
an object of lower mass with correspondingly reduced values
of Pc, Tc, and �c (e.g., Sackmann 1970). The results presented
in Figure 2c illustrate the dependence of Tc on model rotational
properties; similar variations are found for both Pc and �c. For

rigidly rotating configurations, this centrifugal support is largest
in the outermost layers of the interior, which contain only a small
fraction of the stellar mass; in this case, Pc, Tc, and �c are lit-
tle changed from the values appropriate to a nonrotating star of
the same mass. For the � ¼ 0, � ¼ 1 model noted previously,
Pc /Pc0 ¼ 0:94, Tc /Tc0 ¼ 0:96, and �c /�c0 ¼ 0:98, where the sub-
script 0 indicates the nonrotating value. Alternatively, in models
for higher values of �, the effects of rotation are increasingly
concentrated toward the central regions of the star, with the result
that the perturbations to the central thermodynamic quantities
can be more substantial; for � ¼ 2, � ¼ 2:42, Pc /Pc0 ¼ 0:56,
Tc /Tc0 ¼ 0:68, and �c /�c0 ¼ 0:81. Figures 2b and 2c also in-
dicate that the magnitudes of the changes in L, Tc, and other
quantities depend on the assumed profile of internal differential
rotation. The model for � ¼ 5, � ¼ 4 has L/L0 ¼ 0:54, with
Pc /Pc0 ¼ 0:72, Tc /Tc0 ¼ 0:84, and �c /�c0 ¼ 0:85, smaller re-
ductions relative to the nonrotating model than those for � ¼ 2,
� ¼ 2:42. This behavior is an outgrowth of the structural mod-
ifications arising from the centrifugal force distributions asso-
ciated with the different rotation profiles. In the� ¼ 5model, the
ratio of the centrifugal to gravitational force in the equatorial
plane,�2r /g (r is the radial coordinate in the equatorial plane), is
sharply peaked in the innermost portion of the stellar core, with

Fig. 3.—Contours of level surfaces in the meridional plane for some of the nonspherical models listed in Table 1. The six rotating models shown are defined by
the total mass and the two rotational parameters (M , �, �) as follows: (a) 1M�, 1.5, 1.55; (b) 1M�, 3.75, 3.58; (c) 1M�, 5, 4.15; (d ) 1.2M�, 4, 3.74; (e) 2M�, 3, 5.64;
and, ( f ) 2M�, 4.75, 5.9. From the surface inward, the level surfaces depicted in each panel enclose a fraction of the total mass equal to 1.000, 0.995, 0.950, and 0.500,
respectively. The fractional radii in the equatorial plane of these level surfaces for the various models are (a) 1.00, 0.88, 0.71, 0.31; (b) 1.00, 0.90, 0.75, 0.40; (c) 1.00,
0.89, 0.72, 0.37; (d ) 1.00, 0.87, 0.68, 0.34; (e) 1.00, 0.71, 0.37, 0.12; and ( f ) 1.00, 0.66, 0.47, 0.24. Radiative portions of the interior are indicated in white, and
convective regions are shaded gray. The fractional equatorial radii and enclosedmasses for the interfaces between radiative and convective zones in the models are listed
in Table 1. The numbers at the tops of the panels denote the total mass M and equatorial radius Re of each model.
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Limb Darkening Basics 

(a) Deeper, hotter layers are visible near 
the disk center

(b) Shallower, cooler layers are visible 
near the disk limb

isothermal atmospheres do not exhibit 
limb darkening
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Figure 2.4: Solar limb darkening. The viewing angle θ increases with the fractional radius r/R� = sin θ
of the apparent solar disk. The emergent intensity samples shallower layers towards the limb, with smaller
source function. The final drop at r/R� = 1 marks the viewing angle at which the sun becomes optically
thin. Note that substantial decrease of µ = cos θ is reached only close to the limb, for r/R� = sin θ =
(1−µ2)1/2 close to unity (Table 7.2 on page 159). The off-limb extension to this sketch is given in Figure 7.2
on page 148.

– spontaneous radiative deexcitation;
– induced radiative deexcitation;

– collisional excitation;
– collisional deexcitation.

2.3.1 Einstein coefficients

Spontaneous deexcitation. The Einstein coefficient for spontaneous deexcitation is:

Aul ≡ transition probability for spontaneous deexcitation from
state u to state l per sec per particle in state u.

(2.46)

In the absence of collisions and of any other transitions than the ul one, the mean lifetime
of particles in state u is ∆t = 1/Aul s. The corresponding spread in energy is (Heisenberg):
∆E = h/(2π∆t) or ∆ν = γrad/(2π) with γrad ≡ 1/∆t the radiative damping constant.
This “natural” broadening process defines an emission probability distribution ψ(ν−ν0)
around the line center at ν = ν0 that is given by the area-normalized Lorentz profile:

ψ(ν−ν0) =
γrad/4π2

(ν−ν0)2 + (γrad/4π)2
. (2.47)

The Aul coefficient is a summation over the profile, describing the transition probability
for the whole line; the probability per unit of bandwidth is given by Aulψ(ν−ν0) since
ψ(ν−ν0) is measured per Hertz. The spontaneous deexcitation rate per cm3 is given by
the product nuAul.

The emission-profile shape function is discussed in more detail in Section 3.3 on
page 52 ff together with other line broadening processes. The latter are usually much
more important than radiative damping. For a static atmosphere and assuming that each
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         Oblate Saturn Viewed from the Hubble Space Telescope
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L48 A. Domiciano de Souza et al.: The spinning-top Be star Achernar from VLTI-VINCI

Fig. 1. VLTI ground baselines for Achernar observations and their
corresponding projections onto the sky at different observing times.
Left: Aerial view of VLTI ground baselines for the two pairs of 40 cm
siderostats used for Achernar observations. Color magenta represents
the 66 m (E0-G1; azimuth 147◦, counted from North to East) and
green the 140 m (B3-M0; 58◦). Right: Corresponding baseline pro-
jections onto the sky (Bproj) as seen from the star. Note the very effi-
cient Earth-rotation synthesis resulting in a nearly complete coverage
in azimuth angles.

detection of stellar asymmetries. Moreover, Earth-rotation has
produced an efficient baseline synthesis effect (Fig. 1, right).
A total of more than 20 000 interferograms were recorded on
Achernar, and approximately as many on its calibrators, cor-
responding to more than 20 hours of integration. From these
data, we obtained 60 individual V2 estimates, at an effective
wavelength of λeff = 2.175 ± 0.003 µm.

3. Results
The determination of the shape of Achernar from our set of V2

is not a straightforward task so that some prior assumptions
need to be made in order to construct an initial solution for
our observations. A convenient first approximation is to de-
rive from each V2 an equivalent uniform disc (UD) angu-
lar diameter UD from the relation V2 = |2J1(z)/z|2. Here,
z = π UD (α) Bproj (α) λ−1

eff , J1 is the Bessel function of the
first kind and of first order, and α is the azimuth angle of Bproj
at different observing times due to Earth-rotation. The appli-
cation of this simple procedure reveals the extremely oblate
shape of Achernar from the distribution of UD(α) on an el-
lipse (Fig. 2). Since α, Bproj(α), and λeff are known much bet-
ter than 1%, the measured errors in V2 are associated only to
the uncertainties in UD. We performed a non-linear regres-
sion fit using the equation of an ellipse in polar coordinates.
Although this equation can be linearized in Cartesian coor-
dinates, such a procedure was preferred to preserve the orig-
inal, and supposedly Gaussian, residuals distribution as well
as to correctly determine the parameters and their expected
errors. We find a major axis 2a = 2.53 ± 0.06 milliarcsec
(mas), a minor axis 2b = 1.62 ± 0.01 mas, and a minor-
axis orientation α0 = 39◦ ± 1◦. Note that the correspond-
ing ratio 2a/2b = 1.56 ± 0.05 determines the equivalent star

Fig. 2. Fit of an ellipse over the observed squared visibilities V2 trans-
lated to equivalent uniform disc angular diameters. Each V2 is plotted
together with its symmetrical value in azimuth. Magenta points are
for the 66 m baseline and green points are for the 140 m baseline.
The fitted ellipse results in major axis 2a = 2.53 ± 0.06 milliarcsec,
minor axis 2b = 1.62 ± 0.01 milliarcsec, and minor axis orientation
α0 = 39◦±1◦ (from North to East). The points distribution reveals an
extremely oblate shape with a ratio 2a/2b = 1.56 ± 0.05.

oblateness only in a first-order UD approximation. To interpret
our data in terms of physical parameters of Achernar, a consis-
tent scenario must be tailored from its basic known properties,
so that we can safely establish the conditions where a coherent
model can be built and discussed.

4. Discussion
Achernar’s pronounced apparent asymmetry obtained in this
first approximation, together with the fact that it is a Be star,
raises the question of whether we observe the stellar photo-
sphere with or without an additional contribution from a CSE.

For example, a flattened envelope in the equatorial plane
would increase the apparent oblateness of the star if it were
to introduce a significant infrared (IR) excess with respect
to the photospheric continuum. Theoretical models (Poeckert
& Marlborough 1978) predict a rather low CSE contribution
in the K band especially for a star tilted at higher inclina-
tions, which should be our case as discussed below. Indeed,
Yudin (2001) reported a near IR excess (difference between
observed and standard color indices in visible and L band
centered at 3.6 µm) to be E(V − L) = 0.m2, with the same
level of uncertainty. Moreover, this author reports a zero in-
trinsic polarization (p∗). These values are significantly smaller
than mean values for Be stars earlier than B3 (E(V − L) >
0.m5 and p∗ > 0.6%), meaning that the Achernar’s CSE is
weaker than in other known Be stars. Further, an intermediate

*Disk of Achernar (B3 Vpe) resolved as ellipsoid by VLTI
(A. Domiciano de Souza et al.  2003).  Axial ratio: 1.56±0.05

Achernar 
from VLTI 

Resolved Rapid Rotating Stars from Interferometry

� for both the entire set of measurements (solid line) and the
long-baseline measurements only (Bproj > 270 m; dotted line).
Both sets yield a consistent minimum, and the long-baseline
data are particularly sensitive to the position angle orientation.

The visibility constraints on the inclination and gravity dark-
ening exponent are less pronounced but still of great interest.
We show in Figure 12 the reduced �2 as a function of the gravity
darkening exponent � for a series of i ¼ 90� model fits. The best
fit occurs at � ¼ 0:25 for the full set of observations, and this is

also the value derived from gravity darkening studies of B stars
in eclipsing binary stars (Claret 2003). The formal 1 � error limit
yields an acceptable range from � ¼ 0:12 to 0.34, but � ¼ 0 (no
gravity darkening) can only be included if we extend the range
to the 99% confidence level. However, recall from Figure 8
that most of the sensitivity to gravity darkening is only found at
longer baselines and especially at those along the polar axis.
Thus, we also show in Figure 12 the value of reduced �2 for the
i ¼ 90� solutions in two subsets: measurements with baselines
greater than 270 m (31 points) and those with a position angle

Fig. 10.—Normalized visibility residuals as a function of baseline. Each
panel shows the residuals for the model star with i ¼ 90�, � ¼ 0:25, and a
position angle � as indicated (and illustrated at right). The residuals are clearly
minimized at the best-fit value of � ¼ 85N5 (third panel from top). Plus signs in-
dicate measurements in the (u, v)-plane within 30� of the rotation axis (6 points),
diamonds indicate those within 30� of the equator (40 points), and asterisks
indicate the others at intermediate angles (23 points).

Fig. 11.—Plot of �2
� of the visibility fits as a function of position angle �

(for i ¼ 90� and � ¼ 0:25). The solid line shows the reduced �2 for the whole
sample, while the dotted line shows the same for the long-baseline data only.

Fig. 9.—K-band image of the star in the sky (left) and its associated Fourier transform visibility pattern in the (u, v)-plane (right). In both cases north is at the top and
east is to the left. The dotted black line indicates the direction of the rotational axis for this i ¼ 90�, � ¼ 0:25, and� ¼ 85N5model. The upper part of the visibility figure
(right) shows a gray-scale representation of the visibility and the positions of the CHARAmeasurements (black squares). The lower part shows the normalized residuals
from the fit as a gray-scale intensity square against a gray background in a point symmetric representation of the (u, v)-plane. The legend at lower left shows the
intensities corresponding to normalized residuals from �5 (black) to +5 (white). Note that the best-fit points appear gray and merge with the background.

McALISTER ET AL.448 Vol. 628

*Disk of Regulus (B7 V) resolved as ellipsoid by CHARA
(McAlister et al.  2005).  Axial ratio: 1.32±0.02

Regulus
from
CHARA

*Disk of Altair (A7 V) resolved by 
CHARA (J. Monnier et al.  2007).  

*Disk of Alderamin (A7 V) resolved by 
CHARA (M. Zhao et al.  2009).  

*Disk of Rasalhague (A5 III) resolved 
by CHARA (M. Zhao et al.  2009).  
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Gravity Darkening vs. Limb Darkening

Vega Model (i = 5 degrees)

Vega Model (i = 90 degrees)

Observed  SED
Bohlin and Gilliland (2004) 

Gravity darkening:  Intrinsic to the star,
a pole-to-equator effective temperature 
gradient resulting from rapid rotation.  Lo-
cal  Teff  on surface correlates with local 
gravity (e.g., T

eff
  ∝ g¼)

Limb darkening:  
An observer-dependent effect in which the 
intensity across a stellar surface varies due 
to a radial or depth dependent temperature 
gradient.

Pole-on view

Equator-on view

Rapidly Rotating Model 
with Intensity Contours

Aufdenberg et al. (2006) ApJ, 645, 664
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A Pole-on Rapid Rotator:  Vega (Aufdenberg et al. 2006)

Vega

The Sun
pole-on view
(Earth view)

equator-on view

polar effective
temperature:
10150±100 K

equatorial effective
temperature: 
7950±350 K

rotation period:  12.4±0.6 hours
inclination: 4.7±0.3 degrees

2.78±0.02 D
equatorial diameter:

2.26±0.07 D
polar diameter:
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From Tassoul (1978) “Theory of Rotating Stars” 
originally from Maeder & Peytremann (1970) 

Vega is a Pole-on Rapid Rotator (R. Gray 1985, 1988)

Pole-on rapid rotators appear more luminous, have same color as slow rotators 
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K-band
λ = 2.2 μm

152 m

Mt. Wilson, California

302 m

251 m

W1W2
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S1
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Beam Combination Facility light pipe
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Vega
Observations
May, June2005
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Linked
Unit for
Optical
Recombination

beam combiner

212 m

http://www.chara.gsu.edu/CHARA/Slides/CHARAoverview.pdf

CHARA (Center for High Angular Resolution Astronomy) Array
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A Rotating Model Fit to the Visibility Data 

model
data = error bars    

Best Fit Parameters
Teff (pole)                                                  = 10250 K   B9 spectral type
Teff (equator)                                  =  7900 K    A8 spectral type
Log(g) (pole)                                  = 4.10
ω (angular break-up fraction) = 0.91±0.03
θequator                                            = 3.33±0.03 milliarcsecs

x
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Teff (pole)                                                  = 10250 K   B9 spectral type
Teff (equator)                                  =  7900 K    A8 spectral type

Vega’s Spectrum from Different Points of View 

Vega Model (i = 5 degrees)

Vega Model (i = 90 degrees)

Observed  SED
Bohlin and Gilliland (2004) 

Aufdenberg et al. (2006) ApJ, 645, 664
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registration and photosphere subtraction on a frame-by-frame
basis. We then mosaicked the resulting images to produce the
final 24 �m image of Vega’s disk, shown in Figure 2. The mosaic
does not show any saturation artifact at the center because of the
subpixel dithers used in the observation: a pixel that was saturated
in one image is partially overlapped by unsaturated neighboring
pixels in an image from a different dither position. There were
enough dither positions to provide partial coverage even at Vega’s
position in the final mosaic. Because of this infilling of the sat-
urated area, the effective exposure time in the central 600 is about
half of that elsewhere. Photospheric removal at 70 �m was
more straightforward. We registered the scaled reference PSF
mosaic (HD 48915) to the Vega mosaic by centroiding, and sub-
tracted. The results are shown in Figures 3a (coarse scale) and 3b
(fine scale).

TheMIPS 160 �m array suffers from a spectral leak caused by
an internal reflection in the optical train allowing leakage from
very blue and bright Rayleigh-Jeans sources to contaminate the
signals at 160 �m. However, the spectral leak image is offset to
one side of the true 160 �m image, and the brightness of the leak
is proportional to the photospheric flux. Comparison of 160 �m
images of stellar (blue) sources with images of asteroids shows
that the near-infrared leak contributes very little to the 160 �m
images on the opposite side of the source location. The predicted

flux for Vega’s photosphere is 162 mJy, which is much fainter
than the expected disk brightness at 160 �m.We took advantage
of this situation by using only the half of the 160 �m image
where the leak contribution is negligible. We also subtracted a
scaled (red) 160 �m reference PSF (asteroid Harmonia) from the
Vegamosaic, using the pointing information (accurate to<100) to
register. The result is shown in Figure 4.

3. DISK MORPHOLOGIES AT 24, 70, AND 160 �m

Wedefine our observed sensitivity based on the 1� background
noise per pixel using the blank-sky area in the image. The 1 �
background noise in the PSF-subtracted image is 11 �Jy arcsec�2

at 24 �m. The disk at 24 �m is symmetric and centered at the star
position; no obvious asymmetry is seen in the image. At the 1 �
level, the 24 �m disk extends to �4300 (330 AU) in radius. The
total flux density (within the 1 � contour) is �1.5 Jy (�10%).8

This flux density value is in agreement with the IRAS 25 �m
measurement. The quoted IRAS 25 �m flux density for Vega is
�10.5 Jy (combining IRAS Point Source Catalog and Faint
Source Catalog). Based on Kurucz models, Vega’s photosphere
is�6.63 Jy at 25 �m. The relation between the IRAS quoted flux

Fig. 2.—Vega disk at 24 �m displayed with logarithmic scaling. North is up, and east is to the left. Due to the saturation of the central star at 24 �m, all of the
negative values after PSF subtraction have been excluded in the final mosaic, resulting in a smooth image at the core region (r � 600). The coverage (effective
exposure time) near the center is approximately half of that outside the saturation region. The instrument beam size (FWHM) of 600 at 24 �m is shown as a white
circle in the bottom right-hand corner.

8 Flux density error of 10% includes errors in absolute flux calibration, and
in color correction (less than 5% for a blackbody temperature of 95 K).

VEGA DEBRIS DISK: SURPRISE FROM SPITZER 489No. 1, 2005

Su et al.  (2005)   
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Aumann et al.  (1984)  

Vega’s Disk
IRAS  Spitzer  Space Telescope
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NASA/JPL-Caltech/T. Pyle

 A Debris Disk Around a Young Star (artist conception)
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Vega

The Sun
pole-on view
(Earth view)

equator-on view

polar effective
temperature:
10150±100 K

equatorial effective
temperature: 
7950±350 K

rotation period:  12.4±0.6 hours
inclination: 4.7±0.3 degrees

2.78±0.02 D
equatorial diameter:

2.26±0.07 D
polar diameter:

NASA/JPL-Caltech/T. Pyle

 A Debris Disk Around a Rapidly Rotating Young Star 
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SED model by M. Köhler (Univ. of Missouri)

 Amorphous Silicate Illuminated by Vega (Equatorial) Model Spectrum

Köhler, M., Mann, I., and Li, A. (2008) ApJ ,686, L95
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 Amorphous Silicate Illuminated by Vega (Equatorial) Model Spectrum

M. Köhler (Univ. of Missouri)
Köhler, M., Mann, I., and Li, A. (2008) ApJ ,686, L95

∆T � 100K
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 Clues from Rotational Broadening of Spectral Lines
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http://www.astro.uu.se/~oleg/structures.html

gravity-darkened limb (giving comparatively largeDoppler shift),
thus leading to an increase in the squareness and the total strength
with ve.

For each line, we derived the best-fit v�e (or n
�) by searching

for the minimum among the 10 �2
n (n ¼ 0, 1, 2, : : : , 9) values.

The resulting solutions of n� are given in Tables 2 and 3, while
the histograms of their distributions are depicted separately in
Figures 6a and 6b for the lines of neutral and ionized species,

respectively. We should keep in mind that the determination of
n� is a very delicate task (as can be recognized in Figs. 4 and 5),
which is quite vulnerable to any noise or slight blending effect.
However, we can see a manifest peak for the case of neutral
atom lines (Fig. 6a) at v�e ¼ 175 km s�1 (n� ¼ 4), while such a
clear tendency is not observed for ionized atom lines (Fig. 6b),
except for a broad peak at n� ¼ 3Y6 (the maximum frequency ac-
tually occurs for the rigid rotation model of n� ¼ 0). It is evident

Fig. 4.—Model dependence for the profiles of four representative lines of neutral species, (a) C i 4775, (b) Ca i 6162, (c) Fe i 4736, and (d ) Fe i 5133. The upper half of
each panel shows how the theoretical profile,R, varies for different values of ve: (22 km s�1, classical rigid rotationmodel 0, dashed line), (125 km s�1, model 2), (175 km s�1,
model 4, concluded to be the best, thick solid line), (225 km s�1, model 6), and (275 km s�1, model 8). Meanwhile, the lower half of each panel depicts the renormalized
profiles, R̃, for each model, which were scaled so as to yield the same equivalent width derived from the profile actually observed (r obs, open circles). [See the electronic
edition of the Journal for a color version of this figure.]
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 Takeda et al. (2008) find 175 km/s Equatorial Velocity

Takeda, Y., Kawanomoto, S., and Ohishi, N. (2008). 
Rotational Feature of Vega Revealed from Spectral 
Line Profiles. ApJ , 678, 446–462.
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 Takeda et al. (2008) Model Fits Many Neutral and Singly Ionized Lines 

Takeda, Y., Kawanomoto, S., and Ohishi, N. (2008). Rotational Feature of Vega Revealed from Spectral Line Profiles. ApJ , 678, 446–462.
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 Vequ        [km/s]      =   270.354

 Vequ        [km/s]      =   115.682

 Our calculations indicate  270 km/s equatorial speed too high
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Fig. 2.— Plotted here are additional segments of spectra (dotted lines) showing the range of shapes of weak
lines, as in Figure 1, only now overplotted with the synthetic spectra (continuous lines). Note particularly He
I λ 4713 which, with an excitation potential of 21 eV, is formed in a small region around the rotational pole
and displays the corresponding “V” shape. At the other extreme Ca I λ 6162 shows the weak double-horned
(“self-reversed”) shape reflecting its very low excitation potential, 1.9 eV; it is contributed exclusively by the
cooler equatorial regions. Other lines showing this behavior are Ti II λ 4708, Fe I λ 5586, and Ca I λ 5588,
although all three are (weakly) blended. Two iron lines, Fe II λλ 6147 and 6149, at intermediate excitations
of 3.9 eV above the 7.8 eV ionization potential of Fe I, show the expected flat-bottomed shapes, although
seen against a slight variability in the background continuum. The weak Ca I lines indicated with “:” were
not included in the abundance determination.

4

... ButYoon et al. (2008) find 275 km/s Equatorial Velocity

The difference is additional macro-turbulence broadening
  of 10 km/s.

Yoon, J., Peterson, D. M., Zagarello, R. J., Armstrong, J. T., and Pauls, T. (2008). The Effect of Rotation on the Spectrum of Vega. ApJ , 681, 570–578.



Jason P.  Aufdenberg • 13 November 2009 • Sagan/Michelson Fellows Symposium What’s the Matter with Vega?

1
9
5
0
M
N
R
A
S
.
1
1
0
.
.
5
4
8
S

Sweet (1950). The Importance of Rotation in Evolution, MNRAS, 110, 548.

Meridional Circulation May Provide “Macro-turbulence”

Gridding 1-D models on to 3-D stars neglects velocity shear between 
latitudes.
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Requ = 107.48
θequ

πhip
(1)

in solar units with both θequ and πhip in milliarcseconds.

It follows from a Roche model (?, equation 26) that the corresponding polar radius is

Rpole =
ω Requ

3 cos

�
π + cos−1(ω)

3

� (2)

and the stellar mass is

M =
gpole R2

pole

G
(3)

where G is the universal gravitational constant.

The luminosity is then,

L =
σΣ(T pole

eff )4

gpole
(4)

where σ is the Stefan-Boltzman constant and Σ is the surface-weighted gravity Σ (?, equa-

tions 31 and 32), expressed as a power series expansion in ω,

Σ ≈ 4πGM

�
1.0− 0.19696ω2 − 0.094292ω4 + 0.33812ω6

− 1.30660ω8 + 1.8286ω10 − 0.92714ω12

�
(5)

The ratio of the luminosity to Σ provides the proportional factor between the effective

temperature and and gravity for Von Zeipel’s radiative law for all colatitudes ϑ:

Teff(ϑ) =

�
L

σΣ
g(ϑ)

�β

(6)

where the gravity darkening parameter, β, takes the value 0.25 in the purely radiative case

(no convection).
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The effective gravity as a function of ϑ is given by

g(ϑ) =

�
gr(ϑ)

2 + gϑ(ϑ)
2

�1/2

(7)

gr(ϑ) =
−GM

R(ϑ)2
+ R(ϑ)(Ω sin ϑ)2 (8)

gϑ(ϑ) = R(ϑ)Ω2 sinϑ cosϑ (9)

where gr and gϑ are the radial and ϑ components of the gravity field.

The co-latitudinal dependence of the radius is given by

R(ϑ) = 3
Rpole

ω sin ϑ
cos

�
π + cos−1(ω sinϑ)

3

�
(10)

and angular rotation rate is relatived to the critical angular rotation rate 1

Ω = ωΩcrit = ω

�
8

27

GM

R3
pole

�1/2

(11)

At the critical rate, ω = 1 and Requ = 1.5Rpole.

The inclination is then

i = sin−1

�
v sin i

Vequ

�
(12)

where

Vequ = Requ Ω. (13)

At each point the cosine of the angle between the observer’s line-of-sight and the local

surface normal is

µ(x, y) = µ(ϑ, ϕ, i) =
1

g(ϑ)

�
− gr(ϑ)[sin ϑ sin i cosϕ + cosϑ cos i]

− gϑ(ϑ)[sin i cosϕ cosϑ − sin ϑ cos i]

�
(14)

1There is a typographical error in equation (5) of ? which is not in the paper’s erratum (?): ωc = GM
Re

should be ωc = GM
R3

e
, where ωc the critical angular rate, and Re is the equatoral radius at the critical rate.
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Standard Rotating Star Model
1. Point-mass approximation for the potential
2. Uniform (non-differential) rotation
3. Stellar shape is an equipotential surface,  the 
sum of gravitational and centrifugal potentials
4. Von Zeipel gravity darkening law 
5. Interpolated 1-D atmosphere models
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Three-Dimensional Radiative Transport Required to Simulate Spectrum

Hauschildt, P. H. and Baron, E. (2006). A 3D radiative transfer framework. I. Non-local operator splitting and continuum scattering problems. A&A, 451, 273–284.

Visualization of the results from the 
PHOENIX 3-D code (Hauschildt & Baron)

The voxel (volume element) grid has 653 
elements. 

The intensity image is shown for 
(θθ ,φφ) = (0°◦,0◦°), (45°◦, 45°◦), (140°◦, 250°◦) and 
(89°◦, 139◦°).  

The intensities are mapped linearly to 255 
shades of gray.  

In spherical coordinates (n
r
, nθθ, nφφ) = (65, 33, 

65) voxels, an angular resolution on the stel-
lar surface of about 5.5 degrees.
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methods. The future of stellar atmosphere modeling is in 3-D and this project will test these
models against real rapidly rotating stars for the first time.

Research Plan

Model Atmospheres for Self-Consistent Rotating Stellar Structure Models

My on-going collaboration with Keith MacGregor facilitates access to the latest, state-of-the-
art Self-Consistent Field (SCF) models (Jackson et al., 2004, 2005; MacGregor et al., 2007) for
differentially rotating stellar structures (see Figure 4). These models do not use a point-mass
approximation for the gravitational potential, but instead use a mass distribution that is fully self
consistent with the effective potential Ψ, the sum of the gravitational potential Φ from Poisson’s
equation,

∇
2Φ = −4πGρ (2)

where G is the universal gravitational constant and ρ is the mass density, and the centrifugal
potential,

Φ′ =

� ̟

0
Ω2(̟)̟ d̟ (3)

where angular rotation rate Ω is a function of the distance ̟ from the rotation axis. The
differentially rotating model is specified by a mass and the parameters η and α, where

η = Ω0/Ωcr (4)

is the ratio of the axial rotation rate Ω0 to the critical rotation rate Ωcr, the angular velocity for
which the magnitude of the gravitational and centrifugal forces at the equatorial radius Re are
equal. The “anti-solar” form (the pole rotates faster than the equator) of Ω(̟) is given by

Ω(̟) =
Ω0

1 + (α̟/Re)2
. (5)

The parameter α is characterized by Ωe/Ω0 = 1/(1 + α2), a measure of the degree of differential
rotation, where Ωe is the surface equatorial rotation rate. For non-zero values of α, the angular
rate at the equator is slower than that of the rotation axis. The “solar-like” rotation treated by
the SCF code is

Ω(̟) = Ω0

�

1 + (α̟/Re)
2

�

. (6)

These rotation laws are called “conservative” because the pressure, density, and temperature are
all constant on equipotential surfaces. Stellar structure models with non-conservative rotation,
for example nested shells rather than nested cylinders, presently assume a Roche-like potential
(Meynet, 2009). The choice of a β value from von Zeipel’s law (equation 1) fixes the run of effective
temperature with co-latitude. The appearance of the star in the sky is further determined by the
inclination i and the position angle of the rotation axis.

During two weeks in July 2008 I was a visiting scientist at the High Altitude Observatory and
worked with MacGregor and Travis Metcalfe to integrate the output of the SCF code with the
input to the code which handles the interpolation and integration of model atmosphere intensities
(Aufdenberg et al., 2006) including Doppler shifts for high-resolution spectral line synthesis (see
Figure 2). We focused on finding a good match to the oblateness of rapid rotator α Cep (Alderamin)
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rotation increases with �, in the sense that the configurations
corresponding to larger values of � have a greater difference
between the axial and surface equatorial rates of rotation (see
x 2.1).

As Figure 2b makes evident, the radiative luminosities of
these models are diminished relative to the luminosity L0 of a
nonrotating 1 M� star. This is a well-known consequence of in-
cluding rotation in the determination of the equilibrium stellar
structure (see, e.g., Clement 1979; Bodenheimer 1971). In the re-
sults shown in Figure 2, the reduction in L is larger for differ-
entially rotating models than it is for models that are uniformly
or nearly uniformly rotating. A model with � ¼ 0 rotating at the
break-up rate (� ¼ 1) has L/L0 ¼ 0:78, while an � ¼ 2 model
with � ¼ 2:42 has L/L0 ¼ 0:15, a reduction of more than a factor
of 6 from the nonrotating value. Much of the reason for this be-
havior lies in the effect of rotation on the thermodynamic condi-
tions in the deep, energy-producing regions of the stellar interior.
For these 1M� models, the contribution of the centrifugal force
to supporting material against gravity enables the star to emulate
an object of lower mass with correspondingly reduced values
of Pc, Tc, and �c (e.g., Sackmann 1970). The results presented
in Figure 2c illustrate the dependence of Tc on model rotational
properties; similar variations are found for both Pc and �c. For

rigidly rotating configurations, this centrifugal support is largest
in the outermost layers of the interior, which contain only a small
fraction of the stellar mass; in this case, Pc, Tc, and �c are lit-
tle changed from the values appropriate to a nonrotating star of
the same mass. For the � ¼ 0, � ¼ 1 model noted previously,
Pc /Pc0 ¼ 0:94, Tc /Tc0 ¼ 0:96, and �c /�c0 ¼ 0:98, where the sub-
script 0 indicates the nonrotating value. Alternatively, in models
for higher values of �, the effects of rotation are increasingly
concentrated toward the central regions of the star, with the result
that the perturbations to the central thermodynamic quantities
can be more substantial; for � ¼ 2, � ¼ 2:42, Pc /Pc0 ¼ 0:56,
Tc /Tc0 ¼ 0:68, and �c /�c0 ¼ 0:81. Figures 2b and 2c also in-
dicate that the magnitudes of the changes in L, Tc, and other
quantities depend on the assumed profile of internal differential
rotation. The model for � ¼ 5, � ¼ 4 has L/L0 ¼ 0:54, with
Pc /Pc0 ¼ 0:72, Tc /Tc0 ¼ 0:84, and �c /�c0 ¼ 0:85, smaller re-
ductions relative to the nonrotating model than those for � ¼ 2,
� ¼ 2:42. This behavior is an outgrowth of the structural mod-
ifications arising from the centrifugal force distributions asso-
ciated with the different rotation profiles. In the� ¼ 5model, the
ratio of the centrifugal to gravitational force in the equatorial
plane,�2r /g (r is the radial coordinate in the equatorial plane), is
sharply peaked in the innermost portion of the stellar core, with

Fig. 3.—Contours of level surfaces in the meridional plane for some of the nonspherical models listed in Table 1. The six rotating models shown are defined by
the total mass and the two rotational parameters (M , �, �) as follows: (a) 1M�, 1.5, 1.55; (b) 1M�, 3.75, 3.58; (c) 1M�, 5, 4.15; (d ) 1.2M�, 4, 3.74; (e) 2M�, 3, 5.64;
and, ( f ) 2M�, 4.75, 5.9. From the surface inward, the level surfaces depicted in each panel enclose a fraction of the total mass equal to 1.000, 0.995, 0.950, and 0.500,
respectively. The fractional radii in the equatorial plane of these level surfaces for the various models are (a) 1.00, 0.88, 0.71, 0.31; (b) 1.00, 0.90, 0.75, 0.40; (c) 1.00,
0.89, 0.72, 0.37; (d ) 1.00, 0.87, 0.68, 0.34; (e) 1.00, 0.71, 0.37, 0.12; and ( f ) 1.00, 0.66, 0.47, 0.24. Radiative portions of the interior are indicated in white, and
convective regions are shaded gray. The fractional equatorial radii and enclosedmasses for the interfaces between radiative and convective zones in the models are listed
in Table 1. The numbers at the tops of the panels denote the total mass M and equatorial radius Re of each model.
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ciated with the different rotation profiles. In the� ¼ 5model, the
ratio of the centrifugal to gravitational force in the equatorial
plane,�2r /g (r is the radial coordinate in the equatorial plane), is
sharply peaked in the innermost portion of the stellar core, with

Fig. 3.—Contours of level surfaces in the meridional plane for some of the nonspherical models listed in Table 1. The six rotating models shown are defined by
the total mass and the two rotational parameters (M , �, �) as follows: (a) 1M�, 1.5, 1.55; (b) 1M�, 3.75, 3.58; (c) 1M�, 5, 4.15; (d ) 1.2M�, 4, 3.74; (e) 2M�, 3, 5.64;
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rotation increases with �, in the sense that the configurations
corresponding to larger values of � have a greater difference
between the axial and surface equatorial rates of rotation (see
x 2.1).

As Figure 2b makes evident, the radiative luminosities of
these models are diminished relative to the luminosity L0 of a
nonrotating 1 M� star. This is a well-known consequence of in-
cluding rotation in the determination of the equilibrium stellar
structure (see, e.g., Clement 1979; Bodenheimer 1971). In the re-
sults shown in Figure 2, the reduction in L is larger for differ-
entially rotating models than it is for models that are uniformly
or nearly uniformly rotating. A model with � ¼ 0 rotating at the
break-up rate (� ¼ 1) has L/L0 ¼ 0:78, while an � ¼ 2 model
with � ¼ 2:42 has L/L0 ¼ 0:15, a reduction of more than a factor
of 6 from the nonrotating value. Much of the reason for this be-
havior lies in the effect of rotation on the thermodynamic condi-
tions in the deep, energy-producing regions of the stellar interior.
For these 1M� models, the contribution of the centrifugal force
to supporting material against gravity enables the star to emulate
an object of lower mass with correspondingly reduced values
of Pc, Tc, and �c (e.g., Sackmann 1970). The results presented
in Figure 2c illustrate the dependence of Tc on model rotational
properties; similar variations are found for both Pc and �c. For

rigidly rotating configurations, this centrifugal support is largest
in the outermost layers of the interior, which contain only a small
fraction of the stellar mass; in this case, Pc, Tc, and �c are lit-
tle changed from the values appropriate to a nonrotating star of
the same mass. For the � ¼ 0, � ¼ 1 model noted previously,
Pc /Pc0 ¼ 0:94, Tc /Tc0 ¼ 0:96, and �c /�c0 ¼ 0:98, where the sub-
script 0 indicates the nonrotating value. Alternatively, in models
for higher values of �, the effects of rotation are increasingly
concentrated toward the central regions of the star, with the result
that the perturbations to the central thermodynamic quantities
can be more substantial; for � ¼ 2, � ¼ 2:42, Pc /Pc0 ¼ 0:56,
Tc /Tc0 ¼ 0:68, and �c /�c0 ¼ 0:81. Figures 2b and 2c also in-
dicate that the magnitudes of the changes in L, Tc, and other
quantities depend on the assumed profile of internal differential
rotation. The model for � ¼ 5, � ¼ 4 has L/L0 ¼ 0:54, with
Pc /Pc0 ¼ 0:72, Tc /Tc0 ¼ 0:84, and �c /�c0 ¼ 0:85, smaller re-
ductions relative to the nonrotating model than those for � ¼ 2,
� ¼ 2:42. This behavior is an outgrowth of the structural mod-
ifications arising from the centrifugal force distributions asso-
ciated with the different rotation profiles. In the� ¼ 5model, the
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plane,�2r /g (r is the radial coordinate in the equatorial plane), is
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Fig. 3.—Contours of level surfaces in the meridional plane for some of the nonspherical models listed in Table 1. The six rotating models shown are defined by
the total mass and the two rotational parameters (M , �, �) as follows: (a) 1M�, 1.5, 1.55; (b) 1M�, 3.75, 3.58; (c) 1M�, 5, 4.15; (d ) 1.2M�, 4, 3.74; (e) 2M�, 3, 5.64;
and, ( f ) 2M�, 4.75, 5.9. From the surface inward, the level surfaces depicted in each panel enclose a fraction of the total mass equal to 1.000, 0.995, 0.950, and 0.500,
respectively. The fractional radii in the equatorial plane of these level surfaces for the various models are (a) 1.00, 0.88, 0.71, 0.31; (b) 1.00, 0.90, 0.75, 0.40; (c) 1.00,
0.89, 0.72, 0.37; (d ) 1.00, 0.87, 0.68, 0.34; (e) 1.00, 0.71, 0.37, 0.12; and ( f ) 1.00, 0.66, 0.47, 0.24. Radiative portions of the interior are indicated in white, and
convective regions are shaded gray. The fractional equatorial radii and enclosedmasses for the interfaces between radiative and convective zones in the models are listed
in Table 1. The numbers at the tops of the panels denote the total mass M and equatorial radius Re of each model.

RAPIDLY ROTATING STARS 565No. 1, 2007

rotation increases with �, in the sense that the configurations
corresponding to larger values of � have a greater difference
between the axial and surface equatorial rates of rotation (see
x 2.1).

As Figure 2b makes evident, the radiative luminosities of
these models are diminished relative to the luminosity L0 of a
nonrotating 1 M� star. This is a well-known consequence of in-
cluding rotation in the determination of the equilibrium stellar
structure (see, e.g., Clement 1979; Bodenheimer 1971). In the re-
sults shown in Figure 2, the reduction in L is larger for differ-
entially rotating models than it is for models that are uniformly
or nearly uniformly rotating. A model with � ¼ 0 rotating at the
break-up rate (� ¼ 1) has L/L0 ¼ 0:78, while an � ¼ 2 model
with � ¼ 2:42 has L/L0 ¼ 0:15, a reduction of more than a factor
of 6 from the nonrotating value. Much of the reason for this be-
havior lies in the effect of rotation on the thermodynamic condi-
tions in the deep, energy-producing regions of the stellar interior.
For these 1M� models, the contribution of the centrifugal force
to supporting material against gravity enables the star to emulate
an object of lower mass with correspondingly reduced values
of Pc, Tc, and �c (e.g., Sackmann 1970). The results presented
in Figure 2c illustrate the dependence of Tc on model rotational
properties; similar variations are found for both Pc and �c. For

rigidly rotating configurations, this centrifugal support is largest
in the outermost layers of the interior, which contain only a small
fraction of the stellar mass; in this case, Pc, Tc, and �c are lit-
tle changed from the values appropriate to a nonrotating star of
the same mass. For the � ¼ 0, � ¼ 1 model noted previously,
Pc /Pc0 ¼ 0:94, Tc /Tc0 ¼ 0:96, and �c /�c0 ¼ 0:98, where the sub-
script 0 indicates the nonrotating value. Alternatively, in models
for higher values of �, the effects of rotation are increasingly
concentrated toward the central regions of the star, with the result
that the perturbations to the central thermodynamic quantities
can be more substantial; for � ¼ 2, � ¼ 2:42, Pc /Pc0 ¼ 0:56,
Tc /Tc0 ¼ 0:68, and �c /�c0 ¼ 0:81. Figures 2b and 2c also in-
dicate that the magnitudes of the changes in L, Tc, and other
quantities depend on the assumed profile of internal differential
rotation. The model for � ¼ 5, � ¼ 4 has L/L0 ¼ 0:54, with
Pc /Pc0 ¼ 0:72, Tc /Tc0 ¼ 0:84, and �c /�c0 ¼ 0:85, smaller re-
ductions relative to the nonrotating model than those for � ¼ 2,
� ¼ 2:42. This behavior is an outgrowth of the structural mod-
ifications arising from the centrifugal force distributions asso-
ciated with the different rotation profiles. In the� ¼ 5model, the
ratio of the centrifugal to gravitational force in the equatorial
plane,�2r /g (r is the radial coordinate in the equatorial plane), is
sharply peaked in the innermost portion of the stellar core, with
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in Table 1. The numbers at the tops of the panels denote the total mass M and equatorial radius Re of each model.
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can be more substantial; for � ¼ 2, � ¼ 2:42, Pc /Pc0 ¼ 0:56,
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dicate that the magnitudes of the changes in L, Tc, and other
quantities depend on the assumed profile of internal differential
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ifications arising from the centrifugal force distributions asso-
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ratio of the centrifugal to gravitational force in the equatorial
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corresponding to larger values of � have a greater difference
between the axial and surface equatorial rates of rotation (see
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As Figure 2b makes evident, the radiative luminosities of
these models are diminished relative to the luminosity L0 of a
nonrotating 1 M� star. This is a well-known consequence of in-
cluding rotation in the determination of the equilibrium stellar
structure (see, e.g., Clement 1979; Bodenheimer 1971). In the re-
sults shown in Figure 2, the reduction in L is larger for differ-
entially rotating models than it is for models that are uniformly
or nearly uniformly rotating. A model with � ¼ 0 rotating at the
break-up rate (� ¼ 1) has L/L0 ¼ 0:78, while an � ¼ 2 model
with � ¼ 2:42 has L/L0 ¼ 0:15, a reduction of more than a factor
of 6 from the nonrotating value. Much of the reason for this be-
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tions in the deep, energy-producing regions of the stellar interior.
For these 1M� models, the contribution of the centrifugal force
to supporting material against gravity enables the star to emulate
an object of lower mass with correspondingly reduced values
of Pc, Tc, and �c (e.g., Sackmann 1970). The results presented
in Figure 2c illustrate the dependence of Tc on model rotational
properties; similar variations are found for both Pc and �c. For

rigidly rotating configurations, this centrifugal support is largest
in the outermost layers of the interior, which contain only a small
fraction of the stellar mass; in this case, Pc, Tc, and �c are lit-
tle changed from the values appropriate to a nonrotating star of
the same mass. For the � ¼ 0, � ¼ 1 model noted previously,
Pc /Pc0 ¼ 0:94, Tc /Tc0 ¼ 0:96, and �c /�c0 ¼ 0:98, where the sub-
script 0 indicates the nonrotating value. Alternatively, in models
for higher values of �, the effects of rotation are increasingly
concentrated toward the central regions of the star, with the result
that the perturbations to the central thermodynamic quantities
can be more substantial; for � ¼ 2, � ¼ 2:42, Pc /Pc0 ¼ 0:56,
Tc /Tc0 ¼ 0:68, and �c /�c0 ¼ 0:81. Figures 2b and 2c also in-
dicate that the magnitudes of the changes in L, Tc, and other
quantities depend on the assumed profile of internal differential
rotation. The model for � ¼ 5, � ¼ 4 has L/L0 ¼ 0:54, with
Pc /Pc0 ¼ 0:72, Tc /Tc0 ¼ 0:84, and �c /�c0 ¼ 0:85, smaller re-
ductions relative to the nonrotating model than those for � ¼ 2,
� ¼ 2:42. This behavior is an outgrowth of the structural mod-
ifications arising from the centrifugal force distributions asso-
ciated with the different rotation profiles. In the� ¼ 5model, the
ratio of the centrifugal to gravitational force in the equatorial
plane,�2r /g (r is the radial coordinate in the equatorial plane), is
sharply peaked in the innermost portion of the stellar core, with
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More Massive SCF Models for Alpha Eri (Jackson et al.)

Jackson, S., MacGregor, K. B., and Skumanich, A. (2004). Models for the Rapidly Rotating Be Star Achernar. ApJ , 606, 1196–1199.
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There’s More! – Cep &   Oph
Lead Scientist: Ming Zhao

ThereThere’’s More! s More! –– CepCep && OphOph
Lead Scientist: Ming ZhaoLead Scientist: Ming Zhao

Trial SCF Model for Alderamin (Alpha Cep)

i=26.5˚ at 1.6 microns
M = 1.9M�, η = 1.60, α = 0.08
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Trial SCF Model at 
higher inclinations
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8a : M = 2.52M�, η = 1.40, α = 0.80, β = 0.08
7 : M = 2.55M�, η = 1.37, α = 0.80, β = 0.12
6 : M = 2.55M�, η = 2.05, α = 1.50, β = 0.18

Searching for a Vega Model
SCF Model Shapes and Pole-to-Equator Temperature Profiles 
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7 : M = 2.55M�, η = 1.37, α = 0.80, β = 0.12
Too much UV flux, Temperature profile too hot
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8a : M = 2.52M�, η = 1.40, α = 0.80, β = 0.08
Better UV Match; line blanketing is too strong
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Future Work

1. Identify and quantify which radiative 
features are sensitive to which model 
features. 

4. Improve performance of parallel atmosphere 
interpolation algorithms.

2. Find a best fit match of the SCF models to 
the spectrophotometric, spectroscopic, and 
interferometric data sets.

3. Include main-sequence evolutionary 
effects in the SCF rotating models.


