Grid and Reference Frames
Global Astrometry with SIM

Valeri Makarov
Grid

- SIM Grid solution is a global, one step LS adjustment of ~200K unknowns in ~300K equations
- Purpose of the Grid:
 - Determine instrument calibration and baseline orientation parameters for subsequent use in Narrow Angle and Wide Angle data processing
 - Establish SIM Reference Frame (SIMRF) better than 1 μas
 - Additional science (e.g., gravitational deflection) – you are encouraged to invent your own!
- Grid objects:
 - 1304 basic grid stars, RV vetted
 - 25—50 optically bright quasars
 - optionally, all NA targets and all reference stars
Regularized Delay Equation

\[\delta d \equiv (B \cdot \delta s) + (\delta B \cdot s) + C + \delta F + \varepsilon \]

- Unknown baseline orientation (\(\delta B\), 2-vector), apparent position of star (\(\delta s\), 2-vector), path delay offset \(C\), calibration parameters (\(\delta F\), up to \(\sim 40\))
- Condition equation is severely underdetermined and can not be solved from a single measurement or a single tile, hence all sky, global solution needed

\[\sigma_{\text{mission average per star}} = M \cdot \sigma_0 \]

where \(\sigma_0\) is single delay measurement precision (\(\sim 14\) \(\mu\)as), \(M\) is grid multiplier
- If the condition equations were perfectly conditioned, \(M \sim 1/\sqrt{N} \sim 0.07\), but in reality \(M \approx 0.26\) – the loss of condition comes from a coupling of \(\delta B\) and \(\delta s\) unknowns in the finite FOR
Correlated astrometric parameters

- The power spectrum of random errors defined by scalar or vector spherical harmonics is “red”, i.e., most error comes in large-scale perturbations
- Astrometric errors are *positively* correlated across the sky
- Differential Wide Angle mode can give a factor of 2 improvement in precision wrt global accuracy
Parallax zero-point error

- In a typical realization of grid, almost all parallax errors have the same sign because of a dominating zero-point error.
- A relatively small number of quasars (25—50) constrain low-order spherical harmonics and lead to dramatically better grid accuracy in parallax.
Quasars in the Grid

- USNO selected ~110 optically bright, low-variable quasars
- Simulations and covariance analysis of grid solutions with only 23 quasars reveal the benefits of quasar constraints:
 - Overall parallax accuracy improves ~17%
 - Parallax zero-point error improves ~60%
 - Greatly improved confidence intervals of parallax mission performance, e.g., the 0.99 confidence level on parallax error drops from 8.05 μas without quasars to 3.97 μas with only 23 grid quasars
 - The SIM Reference Frame (SIMRF) will be inertial to ~1 μas/yr in residual spin and ~1.7 μas in residual rotation
 - Some harmful systematic errors reduced by a factor of 5, e.g., certain systematic navigation errors and stellar aberration corrections
Why Grid performance is important?

• Correlated zonal errors propagate 100% into Wide Angle astrometry

• Accurate and inertial SIMRF entails fundamental (and free for you) science, for example
 – Galactic rotation and Galactocentric acceleration of the Sun
 – Gravitational bending of light
 – Constraints on relic gravitational waves
 – Speculatively, rotation of the Universe

\[g = h \cos \omega t (xx - yy) \]
Wide Angle astrometric performance

Q: Can WA accuracy be better than the Grid?
A: Yes, but only slightly, only for bright stars and at a cost

Q: Can single visit integration time be traded for number of observations?
A: Yes, as this plot shows

Q: Does the measurement precision depend on the position within a tile?
A: Yes, see backup slide

Mission-average WA astrometric accuracy of proper motions as function of number of observations and single measurement precision
Optimized schedules

Q: Can accuracy be gained by clever scheduling of a given number of observations?
A: Absolutely, see the plot for a SVD-based optimization on parallax accuracy
Backup Slides
Grid multipliers

<table>
<thead>
<tr>
<th>freq.</th>
<th>pos.</th>
<th>par.</th>
<th>p.m.</th>
<th>BLL</th>
<th>Z4</th>
<th>Z5</th>
<th>Z6</th>
<th>Z7</th>
<th>Z8</th>
<th>Z9</th>
<th>Z10</th>
<th>Z11</th>
<th>Z12</th>
<th>Z13</th>
<th>Z14</th>
<th>Z15</th>
<th>Z16-Z28</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/480</td>
<td>0.217</td>
<td>0.249</td>
<td>0.150</td>
<td>0.0908</td>
<td>0.0305</td>
<td>-</td>
<td>0.0351</td>
<td>0.0271</td>
<td>0.0957</td>
<td>0.0952</td>
<td>0.0266</td>
<td>0.0332</td>
<td>0.0485</td>
<td>0.0211</td>
<td>0.0492</td>
<td>0.0316</td>
<td>0.0262-0.0859</td>
</tr>
<tr>
<td>1/480</td>
<td>0.210</td>
<td>0.243</td>
<td>0.146</td>
<td>0.0323</td>
<td>0.0209</td>
<td>-</td>
<td>0.0253</td>
<td>0.0202</td>
<td>0.0408</td>
<td>0.0345</td>
<td>0.0196</td>
<td>0.0222</td>
<td>0.0295</td>
<td>0.0199</td>
<td>0.0328</td>
<td>0.0218</td>
<td>-</td>
</tr>
<tr>
<td>1/480</td>
<td>0.209</td>
<td>0.242</td>
<td>0.145</td>
<td>0.0320</td>
<td>-</td>
</tr>
<tr>
<td>1/480</td>
<td>0.209</td>
<td>0.242</td>
<td>0.145</td>
<td>0.0320</td>
<td>-</td>
<td>17.05</td>
<td>-</td>
</tr>
<tr>
<td>1/480</td>
<td>0.209</td>
<td>0.242</td>
<td>0.145</td>
<td>0.0320</td>
<td>-</td>
<td>-</td>
<td>0.0183</td>
<td>-</td>
</tr>
<tr>
<td>1/100</td>
<td>0.286</td>
<td>0.279</td>
<td>0.199</td>
<td>0.2023</td>
<td>0.0755</td>
<td>-</td>
<td>0.0898</td>
<td>0.0781</td>
<td>0.1826</td>
<td>0.1863</td>
<td>0.0509</td>
<td>0.0800</td>
<td>0.1032</td>
<td>0.0473</td>
<td>0.1163</td>
<td>0.0766</td>
<td>0.0630-0.1742</td>
</tr>
<tr>
<td>1/100</td>
<td>0.263</td>
<td>0.259</td>
<td>0.183</td>
<td>0.0837</td>
<td>0.0532</td>
<td>-</td>
<td>0.0600</td>
<td>0.0567</td>
<td>0.0922</td>
<td>0.0777</td>
<td>0.0353</td>
<td>0.0532</td>
<td>0.0704</td>
<td>0.0461</td>
<td>0.0759</td>
<td>0.0528</td>
<td>-</td>
</tr>
<tr>
<td>1/100</td>
<td>0.255</td>
<td>0.250</td>
<td>0.177</td>
<td>0.0819</td>
<td>0.0396</td>
<td>-</td>
</tr>
<tr>
<td>1/48</td>
<td>0.291</td>
<td>0.270</td>
<td>0.202</td>
<td>0.1212</td>
<td>0.1296</td>
<td>-</td>
<td>0.1263</td>
<td>0.0947</td>
<td>0.1791</td>
<td>0.1602</td>
<td>0.0984</td>
<td>0.1206</td>
<td>0.1468</td>
<td>0.0957</td>
<td>0.1500</td>
<td>0.1053</td>
<td>-</td>
</tr>
<tr>
<td>1/48</td>
<td>0.275</td>
<td>0.251</td>
<td>0.191</td>
<td>0.1113</td>
<td>-</td>
</tr>
<tr>
<td>1/48</td>
<td>0.275</td>
<td>0.253</td>
<td>0.191</td>
<td>0.1114</td>
<td>-</td>
<td>59.06</td>
<td>-</td>
</tr>
<tr>
<td>1/48</td>
<td>0.276</td>
<td>0.256</td>
<td>0.191</td>
<td>0.1114</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0583</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/30</td>
<td>0.321</td>
<td>0.292</td>
<td>0.223</td>
<td>0.1601</td>
<td>0.1978</td>
<td>-</td>
<td>0.1813</td>
<td>0.1375</td>
<td>0.2517</td>
<td>0.2455</td>
<td>0.1364</td>
<td>0.1671</td>
<td>0.2226</td>
<td>0.1512</td>
<td>0.2152</td>
<td>0.1633</td>
<td>-</td>
</tr>
<tr>
<td>1/30</td>
<td>0.293</td>
<td>0.258</td>
<td>0.203</td>
<td>0.1364</td>
<td>-</td>
</tr>
<tr>
<td>1/30</td>
<td>0.294</td>
<td>0.259</td>
<td>0.204</td>
<td>0.1366</td>
<td>-</td>
</tr>
<tr>
<td>1/30</td>
<td>0.294</td>
<td>0.259</td>
<td>0.204</td>
<td>0.1366</td>
<td>-</td>
<td>72.43</td>
<td>-</td>
</tr>
<tr>
<td>1/30</td>
<td>0.295</td>
<td>0.265</td>
<td>0.205</td>
<td>0.1366</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0719</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/30</td>
<td>0.294</td>
<td>0.259</td>
<td>0.204</td>
<td>0.1366</td>
<td>-</td>
<td>0.0808-</td>
</tr>
<tr>
<td>1/30</td>
<td>0.325</td>
<td>0.295</td>
<td>0.226</td>
<td>0.1868</td>
<td>0.2443</td>
<td>1.61e+5</td>
<td>0.2357</td>
<td>0.1615</td>
<td>0.3012</td>
<td>0.2924</td>
<td>0.1603</td>
<td>0.2049</td>
<td>0.2904</td>
<td>178.8</td>
<td>0.3238</td>
<td>0.2015</td>
<td>-</td>
</tr>
<tr>
<td>1/24</td>
<td>0.303</td>
<td>0.266</td>
<td>0.211</td>
<td>0.1497</td>
<td>-</td>
</tr>
<tr>
<td>1/24</td>
<td>0.307</td>
<td>0.276</td>
<td>0.214</td>
<td>0.1501</td>
<td>-</td>
<td>-</td>
<td>0.0792</td>
<td>-</td>
</tr>
<tr>
<td>1/12</td>
<td>0.363</td>
<td>0.328</td>
<td>0.252</td>
<td>0.2018</td>
<td>-</td>
</tr>
<tr>
<td>1/6</td>
<td>0.482</td>
<td>0.479</td>
<td>0.335</td>
<td>0.2898</td>
<td>-</td>
</tr>
</tbody>
</table>
Propagation of FDE

- Field-dependent instrument parameters will be determined in the grid and applied to WA delays
- Field-dependent errors sharply increase at the edge of the FOR (tile)