Planets Around White Dwarf Stars

Fergal Mullally, Don Winget, S. O. Kepler, Ted vonHippel et al

ustration Credit & Copyright: David Arrandy

Monelli et al. (2005), ApJL 621,117

Variable White Dwarves

As they cool
WDs become
variable stars

•This occurs in 3 different temperature regions.

Variable White Dwarves

High Gravity means pulsations are non-radial.

Multi-periodic pulsations 100-1000s, exact mechanism poorly understood

> MCDONALD OBSERVATORY THE UNIVERSITY OF TEXAS AT AUSTIN

 $\ell=2$

Asteroseismology

- Unique way to look inside a star.
- Calibrate models used for measuring age of the Galaxy (Winget 1987)
- Pulsations probe the convection zone, testing our poorly understood convection theories (Montgomery 2005)

Very stable pulsations

•Some pulsational modes are highly monoperiodic (dP/_{dt} ~ 10⁻¹⁵, Kepler 2005)

•Dominant source of period drift is cooling of star.

•Stable pulsations are the accurate clocks we use to find planets

Why look at DAVs?

- White dwarves were once main sequence stars.
- Star:planet mass ratio lower than for MS progenitor
- Our method is more sensitive to planets at larger orbital separations
- Pulsations can often be used to measure inclination of rotation axis, providing information on sin(*i*)

The radial velocity question

Histogram of Semimajor Axes Lick, Keck, AAT 20 75 Planets Number of Planets 15 10 5 0.1 1.0 10.0 Semimajor Axes (AU) http://exoplanets.org/semimajor_axes.html

White Dwarves as Planet Hosts Pros

- Main sequence progenitors, any planets presumably formed with the star, unlike pulsar planets
- Lower star-planet mass ratio means effect of planet on WD motion greater

(also a lower flux contrast)

 Pulsations can often be used to measure inclination of rotation axis yielding information on the elusive sin(*i*)

Cons

Spectrum dominated by broad Balmer lines high resolution radial velocity

impossible.

White Dwarves are faint, making observations more difficult.

motion also create \dot{P}

Measuring \dot{P}

Expanding the expected arrival time as a Taylor series gives:

Pulsation Period

• $O-C = \Delta T_0 + \Delta P \cdot E + \frac{1}{2} P \dot{P} E^2$

Number of Cycles = (t/P)

Rate of change of Period

 Sensitivity to P increases with observing time squared

Will Planets survive Red Giant Phase? - Theory

 When our sun dies, Mercury engulfed by red giant, Mars survives (Sackmann 1993)

FIG. 7.—Changes in the solar radius as a function of time. (a) Our preferred mass-loss case, with $\eta = 0.6$; (b) our low mass-loss case, with $\eta = 0.4$. The radial oscillations on the right are due to helium shell flashes. The mean orbital radii of the inner planets are also shown as a function of time (*dotted lines*); note changes in these orbital radii, due to changes in the mass of the Sun. Symbols have the same meaning as in Fig. 2.

Will Planets survive Red Giant Phase? - Theory

If τ_{stellar mass loss} >> orbital period, single planets will drift outward with mass loss (Burleigh 2002).

 $\mathbf{a}_f = (\mathbf{M}_i / \mathbf{M}_f) \mathbf{a}_i$

 Duncan & Lissauer (1998) predict orbital stability for greater than 10⁹ years after Red Giant.

> MCDONALD OBSERVATORY THE UNIVERSITY OF TEXAS AT AUSTIN

Will Planets survive Red Giant Phase? - Empirical Evidence

Discovery of 4 planets around K Giant stars by RV method (e.g Frink et al. 2002)

 White Dwarf, Main Sequence & 4M_J exoplanet system GI 86B (although planet is only 0.11 AU from MS star)

> MCDONALD OBSERVATORY THE UNIVERSITY OF TEXAS AT AUSTIN

Planet detection probability for G117 based on 30 years of archival data

The Plan

- Increase the sample of suitable stars to 30 or more (Mukadam 2004, Mullally 2005)
 - Given than ~10% of radial velocity stars are known to have stars, we can reasonably expect ~3 of our white dwarves to habour planets.
- Monitor each star to search for periodic variations in arrival time

MCDONALD OBSERVATORY THE UNIVERSITY OF TEXAS AT AUSTIN

Incidental science along the way

The Expected Result

2.1m Otto Struve Telescope at McDonald Observatory

Repeated short integrations

Seasonal O-C WD1354+0108 P=198.307 718 2(43)

Conclusions

- White Dwarves are ideal laboratories for everything from planets to the age of the Galaxy
- An orbiting planet can measurably affect the observed arrival time of these pulses here on earth.
- Planets further out are easier to detect using this method

Plasmon Neutrinos

 $\gamma \rightarrow e^- + e^+ \rightarrow v_{\rho}$

- Neutrinos not produced exclusively in nuclear reactions
- In a hot dense plasma, photons can transform themselves into neutrinos

Needs high energy photons

and strong electric field of nearby nucleus

Winget (2004)

- Talk about number of planets expect to find
- Emph that we expect the planets to form far out (3-10 AU)

