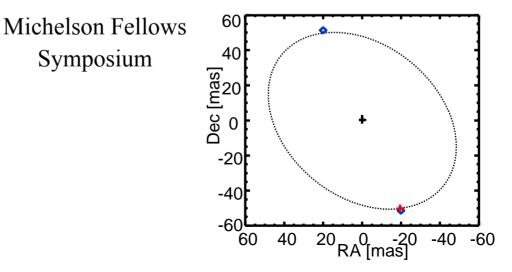
Quadarature Phase Interferometery: Squeezing More Out Of **Rotation Shearing Interferometry**

> Brian Kern 20 October 2005

> > Symposium



Project team — Research personnel and collaborators

- PIs:
 - Dimotakis, Paul E. Aeronautics and Applied Physics
 - Martin, Christopher Physics
- Postdoctoral Fellow
 - Kern, Brian

- Aeronautics
- QPI design, assembly and optics integration
- Overall system integration
- Lab/Palomar experiments lead
- Research staff
 - Katzenstein, Garrett Aeronautics
 - Mechanical design
 - Lang, Daniel B.
- Aeronautics
- Camera head
- Data-acquisition system
- Imaging/electronic system integration

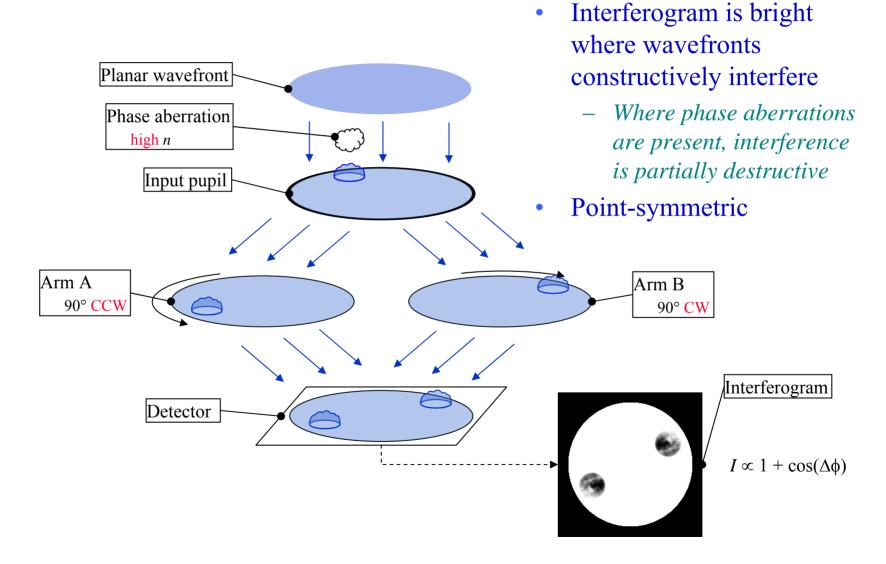
- Undergraduate Research Assistant:
 - Thessin, Rachel Applied Physics
 - QPI analysis / alignment / calibration
- Digital-imaging collaborators
 - Wadsworth, Mark, Collins, S. A., and Elliott, Tom JPL
 - CCD design
 - Imager system integration

• How we do it

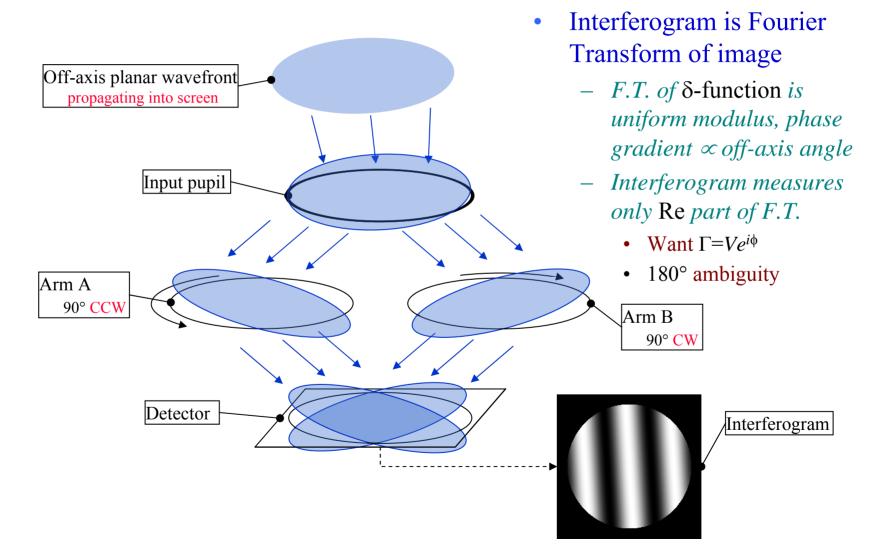
• What we did

• What we'd like to do

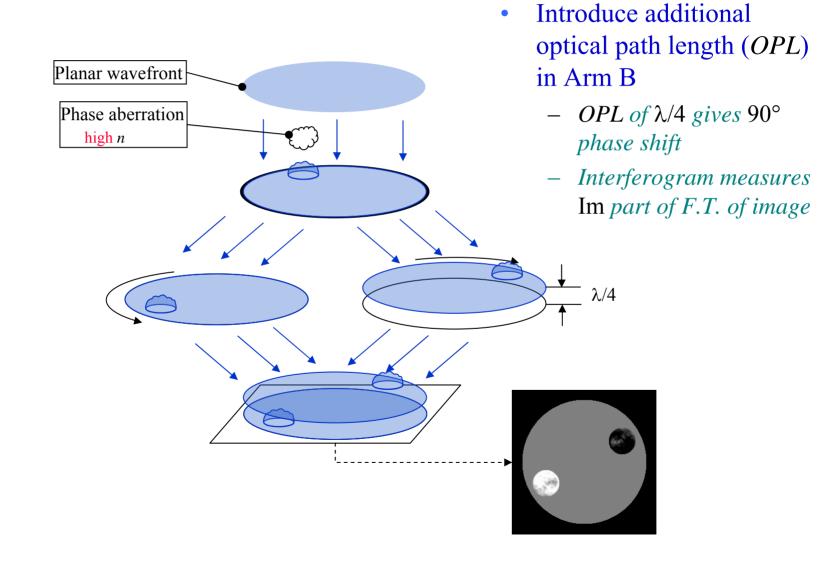
Rotation shearing interferometry



Interferogram relationship to image



Control of instrumental phase



Mach-Zehnder arrangement – two interferograms

- Interferometer makes 2 copies of • pupil
 - Each copy is rotated 90°
 - When recombined, relative rotation shear is: 180°

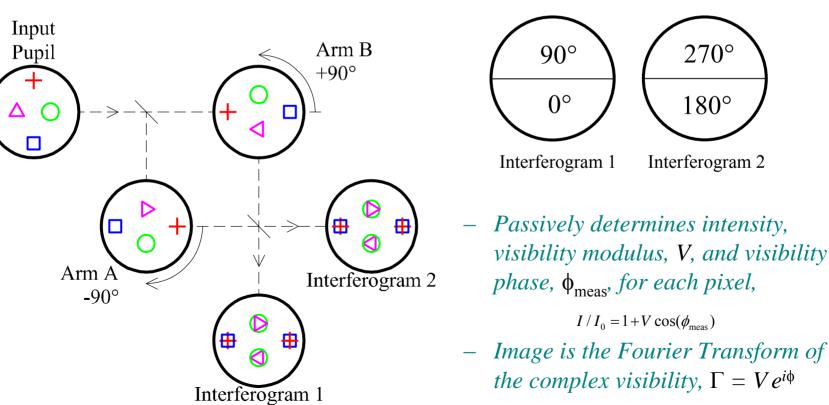
- Arrange instrumental phase terms to give four quadrants
 - *Each interference pair* simultaneously measured in all four quadrants

 $I/I_0 = 1 + V \cos(\phi_{\text{meas}})$

270°

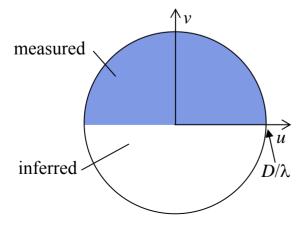
180°

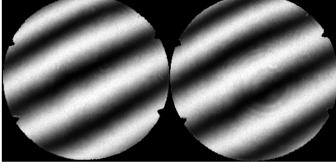
Interferogram 2



Mach-Zehnder arrangement – two interferograms

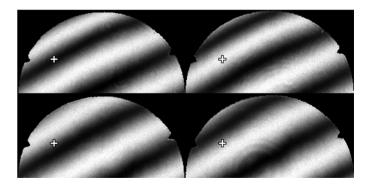
- Sample interferogram ullet
 - Source is pinhole, V=1 everywhere
 - *Phase is linear function of* position
- Four measurements give I, V, ϕ
- Coverage of (u,v)-plane is perfect • out to telescope cutoff frequency
 - Complex Γ is Hermitian (object is real)





raw

registered



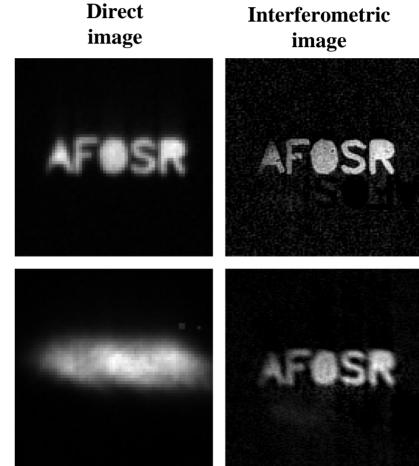
	QPI	AO
Equivalent number of actuators	50,000	1,500?
Does not require reference wavefront	\checkmark	×
Unaffected by amplitude fluctuations	\checkmark	×
Unlimited effective actuator stroke	\checkmark	×
Acts as wavefront sensor	×	\checkmark
Produces corrected wavefronts	×	\checkmark
Produces real-time image	?	\checkmark
Accommodate turbulent timescales		
shorter than correction timescales	\checkmark	×

Laboratory experiment

- Direct images acquired simultaneously with interferometric images, through identical non-aberrating/turbulent conditions
 - *Exposures*: 100 μs
 - Aberrated images (direct and interferometric) are 12-frame averages
 - Interferometric images are high-pass filtered
 - Split between quadrants removes small **u**'s
- Interferometric images remain near-diffraction-limited
 - Diffraction limit is approximately half the width of straight segments in individual letters

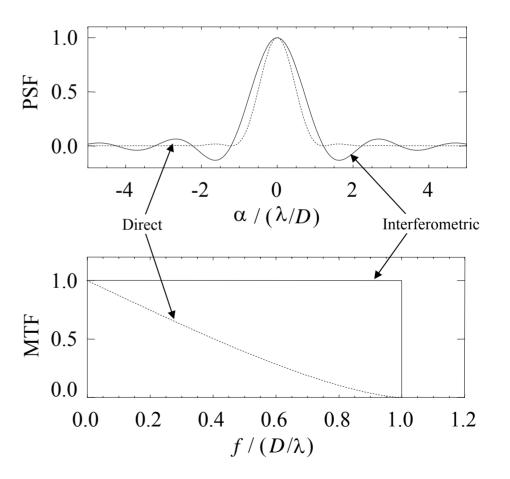
Unaberrated

Aberrated



MTF, PSF of unaberrated imaging systems

- Point-Spread Function (PSF) of imaging system (vs. angular measure) is response to pointsource object
 - Direct-imaging PSF is square of Airy function
 - QPI PSF is Airy function
- Modulation Transfer Function (MTF) of imaging system (vs. angular frequency) is modulus of PSF Fourier Transform
 - Direct-imaging MTF decreases to zero at high angular frequencies
 - *QPI MTF is uniform vs. angular frequency*

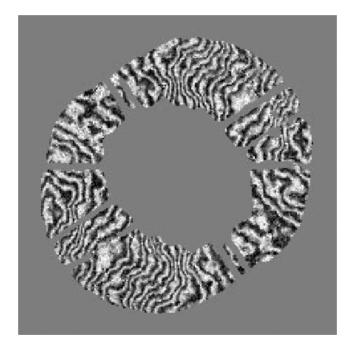


Laboratory experiment — *Discussion*

- Interferometric imaging can yield sharp images in the presence of phase aberrations that severely compromise direct imaging.
 - Rotation-shearing interferometers are insensitive to phase aberrations that are even about the center of rotation (point-symmetric)
 - Spherical aberration
 - Defocus
 - Astigmatism
 - *QPI measures amplitude fluctuations separately from phase fluctuations*
 - Amplitude fluctuations are not included in image reconstruction, mitigating image degradation
 - This is much more important when imaging horizontally through near-ground, atmospheric boundary layer turbulence, for example
- QPI technique is most powerful at high angular frequencies
 - *QPI Modulation Transfer Function (MTF) is uniform out to cutoff frequency, while Direct Imaging MTF decreases (nearly) linearly out to cutoff frequency*
 - This difference is much more pronounced in the presence of aberrations
 - QPI MTF is unaffected by turbulent aberrations

Palomar observations — Vega

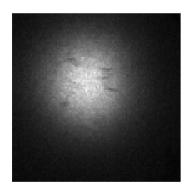
- Vega is bright, point-like star
 - Vega's size is below diffraction limit, so $V \sim 1$, everywhere



- Structure in interferogram is due to phase aberrations
 - Scintillation has already been removed by differencing

Palomar observations — *Vega image reconstruction*

- Direct images show FWHM ~ 1 arcsec
 - *Compare to diffraction limit of* 0.029 arcsec
- Raw interferometric images from 10 s of data (400 frames) show FWHM of 0.5 arcsec
- "Calibrated" interferometric images show FWHM of 0.2 arcsec



Direct image

Interferometric image

Calibrated interferometric image

• Averaged phase statistics worse than expected

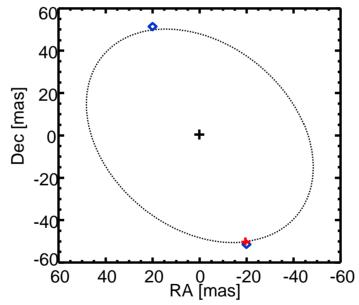
Palomar observations — Capella

- Capella is bright, binary star system
 - The two stars have equal brightness
 - Separation 0.050 arcsec
 - Compare to 1 arcsec seeing, 0.029 arcsec diffraction limit
 - 100-day *orbit*
- Measured while QPI had alignment errors
 - Due to flexure of telescope
 - No visibility phase measurements
 - Modulus-only

Capella visibility modulus V

Palomar observations — Capella analysis

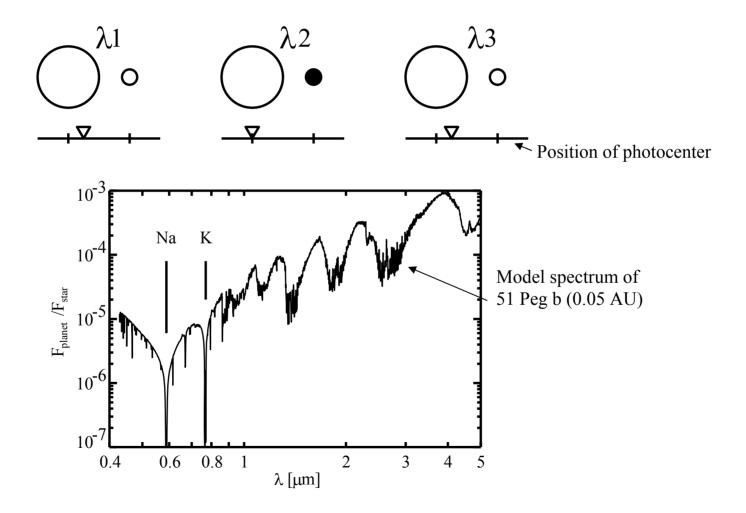
- Capella's orbit previously measured interferometrically
 - Extrapolate to time of Palomar observations
- Compare measured binary separation to inferred binary separation



- Relative error 0.001 arcsec
 - Compare to diffraction limit of 0.029 arcsec
 - "Super-resolution" due to fitting of ~ 10,000 independent measurements

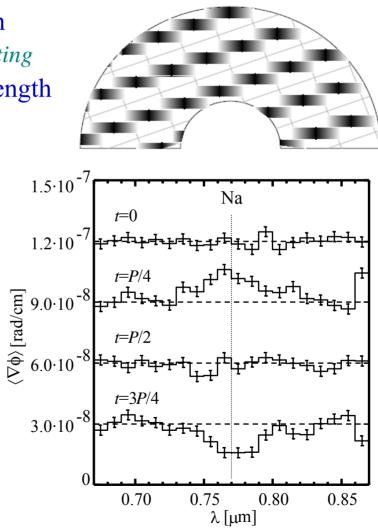
Differential phase

• Measure phase difference between nearby wavelengths



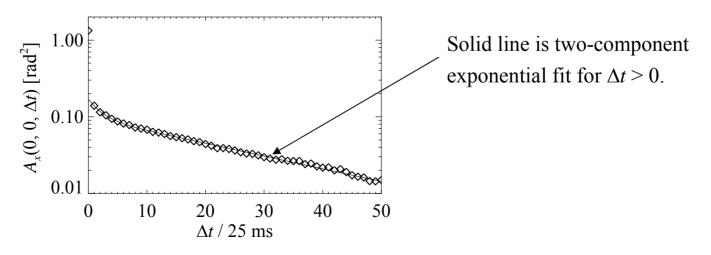
Differential phase sensitivity

- Introduce spectral information
 - Lenslet array, reflection grating
- Measure phase at each wavelength
 - 2 hours *at Keck*
 - *Observe* τ Boo, 51 Peg b, υ And
- Get orbital inclination, unambiguous mass
- Measure spectra!



Palomar Observations — Characterization of turbulence

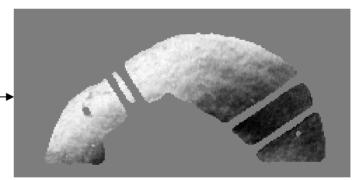
- First statistic comes from variance of phase gradients
 - Variance of x-gradient is $\langle (\nabla_x \phi)^2 \rangle \sim 2D_{\phi}(\Delta x)$, same for y-gradient
 - Using finite differences, Δx (pixel scale at pupil) is 2 cm
 - Kolmogorov turbulence gives $D_{\phi}(r) = 6.88 (r/r_0)^{5/3} \text{ rad}^2$
 - Compare with estimate from seeing, $r_0 \sim \lambda/\omega$
 - Seeing of $\omega = 1$ arcsec, $\lambda = 0.7 \ \mu m$ gives $r_0 \sim 14 \ cm$
- Variance of phase gradients ~ 1.3 rad², corresponds to $r_0 \sim 8$ cm
 - Underestimate by $\times 2$
- Measurement noise (read & shot/Poisson noise) must be removed
 - Examine temporal variation of spatio-temporal autocorrelation of measured phase (~atmospheric-turbulence) gradients



Palomar Observations — Determination of phase offset

- Instrumental phase terms in "quadrants" are not exactly 90° apart
 - Realizing QPI potential when imaging through 5m telescope and full-spectrum turbulent medium requires ~ 1° phase accuracy, i.e., ~10 nm surface specification
- Determine instrumental phase offset from covariance of intensities
 - *Covariance gives* $2 \langle \cos(\phi_{turb}) \cos(\phi_{turb} + \Delta \phi) \rangle = \cos(\Delta \phi)$
 - Assumes φ_{turb} is has uniform statistical distribution
 - Pixel-by-pixel self-calibration

Pixel-by-pixel normalized covariance based on 400-frame sample.



- Sign uncertainty in $\Delta \phi$ (cosine is an even function)
 - Assume all $\Delta \phi$ positive
- Can eliminate sign ambiguity by fitting smooth function to entire map
- Covariance does not calibrate all of instrumental phase term
 - Phase offset is difference between upper and lower instrumental terms
 - Upper instrumental phase term requires separate calibration for full phase retrieval

Visibility phase statistics — Averaging of turbulent phase terms

- Statistics of turbulent phase terms specified by structure function
 - Assumes turbulence is isotropic and homogeneous
 - Kolmogorov assumption gives $D_{\phi}(r) = 6.88 \ (r/r_0)^{5/3} \ rad^2$
 - Average turbulent phase term is zero
- rms turbulent phase terms are $> 2\pi$ for $r \sim 30$ cm
 - Compare to r = 500 cm at edge of pupil
- Measured phase terms are wrapped (modulo 2π)
- Use directional statistics

- Mean direction
$$\theta^{av} = \operatorname{atan}\left[\frac{\sum_{i}\sin(\theta_{i})}{\sum_{i}\cos(\theta_{i})}\right]$$

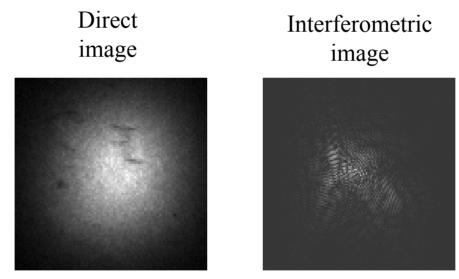
- Variance of sample mean, $\langle (\theta^{av})^2 \rangle = (e^{\sigma^2} e^{-\sigma^2}) / 2n$
 - If averaging turbulent phase terms, σ^2 comes from D_{ϕ}
 - Can't simply average measured phase
 - Baseline of r = 1 m, with $r_0 = 10$ cm, requires $> e^{300}$ exposures for 1 rad rms error

Visibility phase — Averaging of phase gradients

- Variance of sample mean $\langle (\theta^{av})^2 \rangle = (e^{\sigma^2} e^{-\sigma^2})/2n$
- Instead of averaging phase terms, average phase gradients
 - *Define* $\nabla_x \phi = \phi(x + \Delta x, y) \phi(x, y), \Delta x = 2 \text{ cm}$
 - *Variance of turbulent phase gradient* $\sigma^2 = 2D_{\phi}(\Delta x) \sim 1 \text{ rad}^2$ (for $r_0 = 10 \text{ cm}$)
 - Turbulent phase-gradient terms average out quickly
 - For small σ^2 , variance of sample mean looks like σ^2/n
- Create $\nabla^2 \phi$ from average phase gradient components $(\nabla_x \phi)^{av}$ and $(\nabla_v \phi)^{av}$
 - Solve Poisson's Equation, $\nabla^2 \phi = f(x, y)$, to find average phase, ϕ^{av}
 - Poisson's Equation solution is automatically unwrapped
- Solution from $\nabla^2 \phi$ reduces turbulent phase term rms by $1/n^{1/2}$
 - Separation of timescales
 - Time-varying phase terms reduced to their mean by this process
 - Makes use of correlation of nearby points to reduce variance

Palomar Observations — Image reconstruction

- Form $\Gamma(u,v) = V(u,v) \exp\{i \phi(u,v)\}\$, take Fourier Transform
 - Measure V and ϕ only in upper quadrant, v > 0
 - $F(\alpha,\beta)$ is real, so $\Gamma(u,v)$ is Hermitian
 - $V(-u,-v) = V(u,v), \ \phi(-u,-v) = -\phi(u,v)$

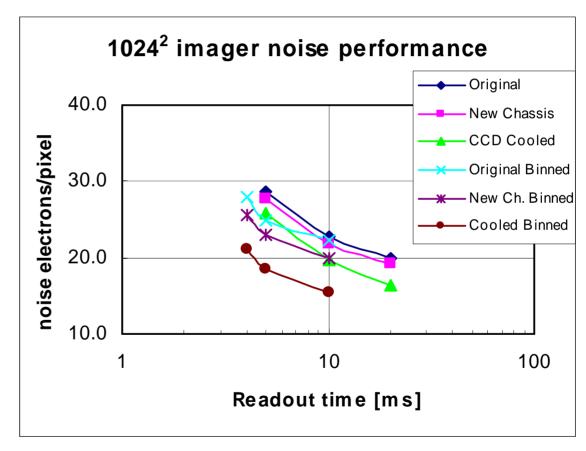


- Both images are averages of 400 exposures (10 s)
- FWHM of direct image 1.0 arcsec, interferometric image 0.3 arcsec
- Average phase ϕ^{av} still contains instrumental phase term

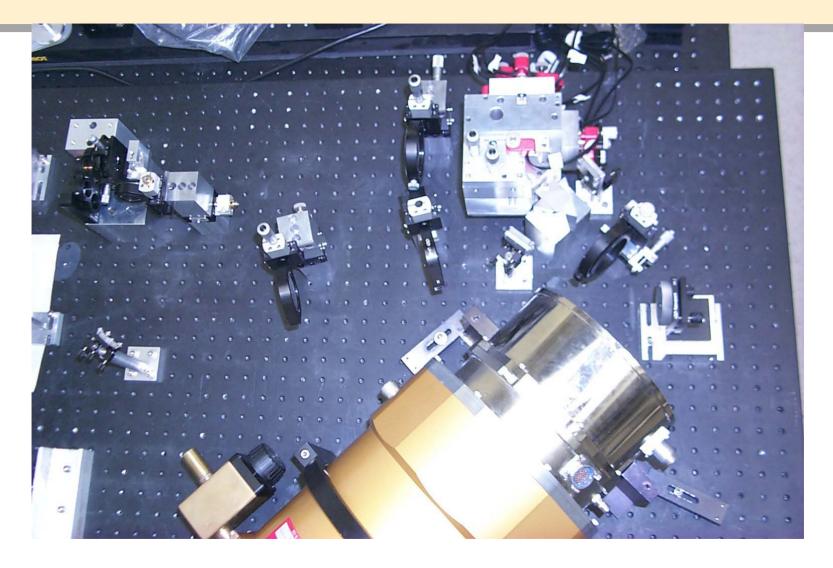
KFS CCD measured noise performance

- Noise performance optimized for each read time
- Options:
 - Read time
 - *Binning*: 2×2
 - *Cooling:* -10°C
- Shortest read time is 3 ms (333 fps) unbinned
- Lowest noise performance (that we are aware of) at such frame rates
 - These figures represent system noise
 - CCD + amplifiers + A/D

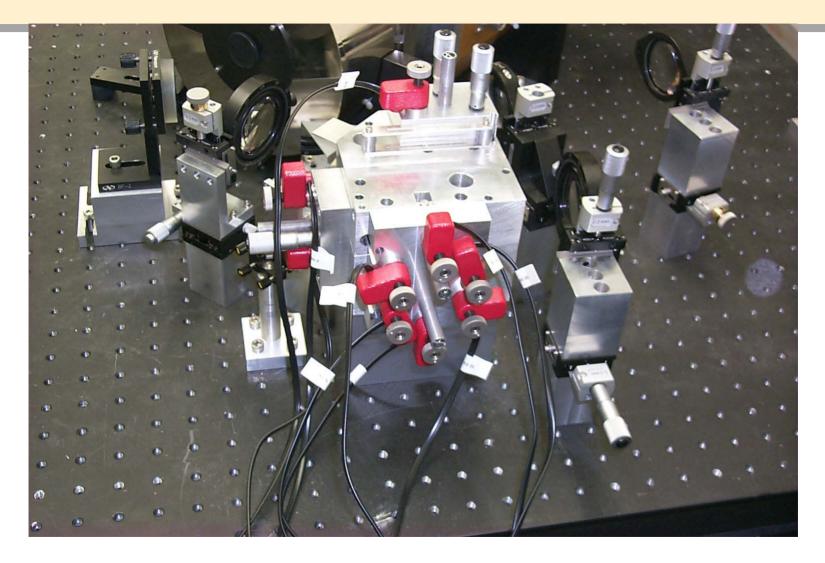
+ DAS



Interferometer layout

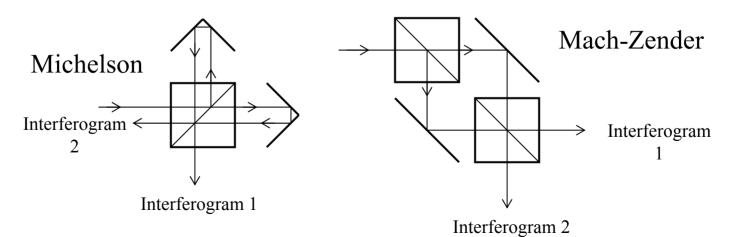


Interferometer closeup



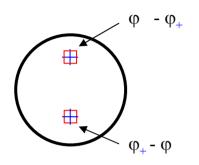
Optical system — Present implementation*

- Quadrature-Phase Interferometer
 - Rotation-shearing pupil-plane interferometer
 - Rotation shear by 180°
 - Measures full complex-visibility, over entire pupil, in a single exposure
- Two important developments
 - Mach-Zender interferometer
 - Two interferograms available
 - Higher efficiency (energy conservation)
 - Phase shifts in each exposure: 0°, 90°, 180°, 270°



* Interferometer instrumentation development previously cosponsored by NSF Grant AST9618880.

Quadrature phase in interferogram — I



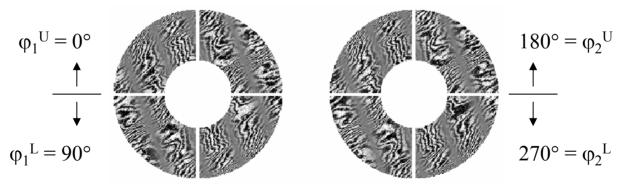
Interferogram

• Interferogram intensity depends on

$$\cos(\phi - \phi_{+}) = \cos(\phi_{+} - \phi)$$

Each interferogram has redundant information.

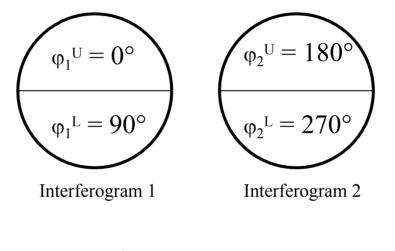
- Splitting Mirror A3 into two halves introduces a pathlength difference, set to 90°-phase shift in half of each interferogram.
- The two interferograms, each with two halves, allow concurrent measurement of V(**u**) and φ(**u**)



Simulated 10 ms exposure frame of double-star Capella with Palomar 5 m telescope, coherence length, $r_0 = 10$ cm (amplitude fluctuations removed).

Quadrature phase in interferogram — II

- Split interferograms into two halves
 - Set instrumental path-length differences to multiples of 90°



$$I_{1}^{U}(\mathbf{x}) / \langle I \rangle = 1 + \operatorname{Re}\{\gamma(\mathbf{u})e^{i0}\} = 1 + \operatorname{Re}\{\gamma(\mathbf{u})\}$$

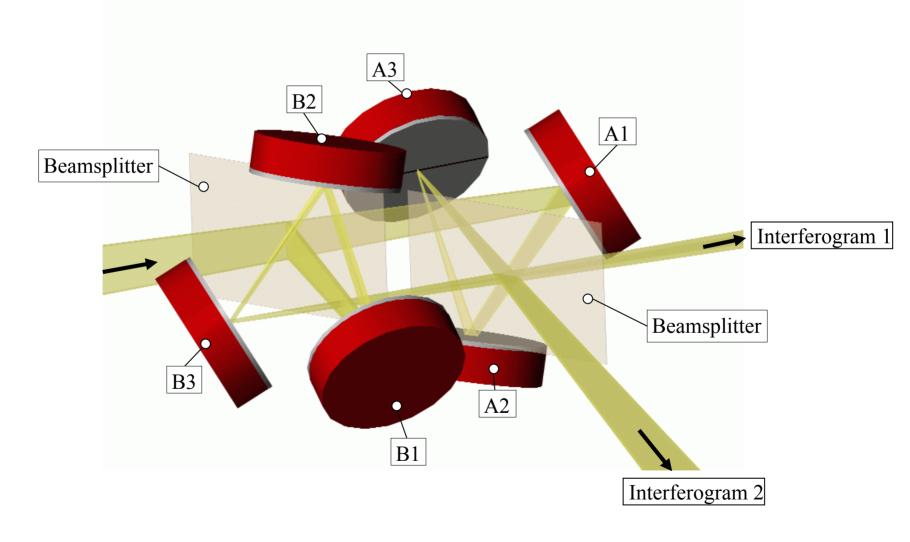
$$I_{1}^{L}(\mathbf{x}) / \langle I \rangle = 1 + \operatorname{Re}\{\gamma(\mathbf{u})e^{i\pi/2}\} = 1 - \operatorname{Im}\{\gamma(\mathbf{u})\}$$

$$I_{2}^{U}(\mathbf{x}) / \langle I \rangle = 1 + \operatorname{Re}\{\gamma(\mathbf{u})e^{i\pi}\} = 1 - \operatorname{Re}\{\gamma(\mathbf{u})\}$$

$$I_{2}^{L}(\mathbf{x}) / \langle I \rangle = 1 + \operatorname{Re}\{\gamma(\mathbf{u})e^{i\pi}\} = 1 - \operatorname{Re}\{\gamma(\mathbf{u})\}$$

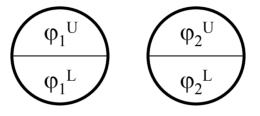
$$I_{2}^{L}(\mathbf{x}) / \langle I \rangle = 1 + \operatorname{Re}\{\gamma(\mathbf{u})e^{i3\pi/2}\} = 1 + \operatorname{Im}\{\gamma(\mathbf{u})\}$$

Interferometer geometry — Instrument implementation

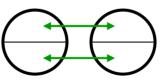


Alignment requirements — Instrumental quadrant phases I

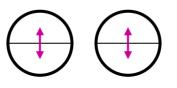
• Instrumental visibility phases (path-length differences) should be $\phi_1^{U} = 0^{\circ}, \phi_1^{L} = 90^{\circ}, \phi_2^{U} = 180^{\circ}, \phi_2^{L} = 270^{\circ}.$



- Guaranteed to have $\varphi_2^U - \varphi_1^U = \varphi_2^L - \varphi_1^L = 180^\circ$ (conservation of energy)



- Quadrant offset, $\Delta \varphi = \varphi_1^U - \varphi_1^L = \varphi_2^U - \varphi_2^L$, should be 90°.



Alignment requirements — Instrumental quadrant phases II

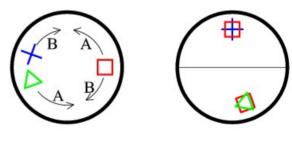
- Instrumental visibility phases (path-length differences) should be: $\phi_1^{U} = 0^\circ, \phi_1^{L} = 90^\circ, \phi_2^{U} = 180^\circ, \phi_2^{L} = 270^\circ.$
 - Guaranteed to have $\varphi_2^U \varphi_1^U = \varphi_2^L \varphi_1^L = 180^\circ$ (conservation of energy)
 - Phases $\phi_1^{\ U}$ and $\phi_1^{\ L}$ are independently controlled with $\leq 30 \text{ nm}$ precision
 - Can determine quadrant offset, $\Delta \varphi = \varphi_1^U \varphi_1^L = \varphi_2^U \varphi_2^L$, from the same exposures used for observations
 - Deviations from $\Delta \phi = 90^{\circ}$ do not cause errors, as long as $\Delta \phi$ is measured well
 - Need random phase aberrations for in-line calibration
 - Intensities in interferograms measure $\cos(\varphi_1^U + \varphi_{aber})$, $\cos(\varphi_1^L + \varphi_{aber})$, ...
 - Correlation of upper- and lower-quadrant intensities gives $\Delta\phi,$ since,

$$\left\langle \cos(\varphi_1^{U} + \varphi_{aber,t})\cos(\varphi_1^{L} + \varphi_{aber,t})\right\rangle_t = \cos(\varphi_1^{U} - \varphi_1^{L})$$

- No need for independent calibration of quadrant offset
- The free variable φ^{U}_{1} can be calibrated offline
 - Errors in ϕ_1^U contribute no errors in the visibility modulus, $V(\mathbf{u})$
 - Errors in ϕ_1^U contribute only overall phase shifts to the complex visibility, $\gamma(\mathbf{u})$.

Alignment requirements — *Rotation shear*

- Rotation shear should be 180° •
 - Shear is a measure of relative geometric rotation about the interferometer's *center of rotation (not phase)*
 - Arm A rotates +90°
 - Arm B rotates -90°
 - Rotation shear is the net rotation, 180°
- Effect of errors in rotation shear depend on spatial structure of measured ulletphase (including object visibility phase and turbulent phase)
 - *Example: Arm A rotates* +90°, Arm B rotates -70°
 - Upper and lower interferograms do not interfere same pairs of points in the input pupil
 - *If phase changes on scales short enough* to differ between noncommon points, interferometer will not measure quadrature phase

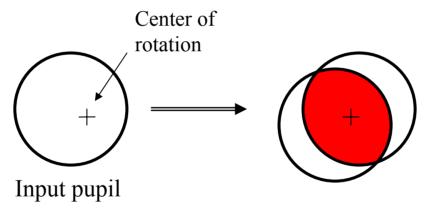


Input Pupil

Interferogram 1

Alignment requirements — Pupil image positions

- Ideally, center of rotation should coincide with center of pupil image
- Location of pupil with respect to center of rotation affects the measurements only through the angular frequency coverage in a single exposure

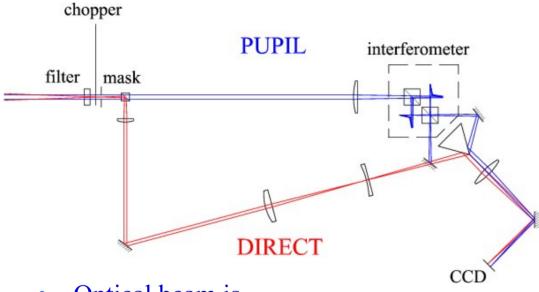


- Highest frequencies have no interferometric coverage

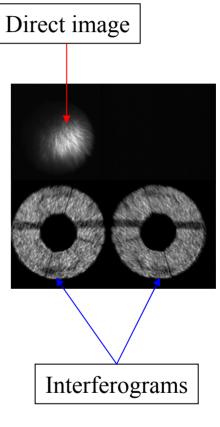
Alignment requirements — Spectral coherence

- Spectral coherence requirements are set by magnitude of maximum turbulent-phase terms
 - *Fractional bandwidth*: $\delta \lambda / \lambda \leq 2\pi / \phi_{max}$
 - At Palomar (normal observing conditions), this is about $\delta\lambda/\lambda \le 1/10$
 - *QPI set at* $\lambda \cong 700 \text{ nm}, \delta \lambda \cong 20 \text{ nm}, \Rightarrow \delta \lambda / \lambda \cong 1/35$
- Phase differences that exceed the limit imposed by the fractional bandwidth lead to decreases in visibility modulus
 - Observations superpose fringes with different spacing (fringe spacing $\propto 1/\lambda$),
 - Fringes at different wavelengths are out of phase with each other at large path length differences (large turbulent-phase terms)

Optics system schematic

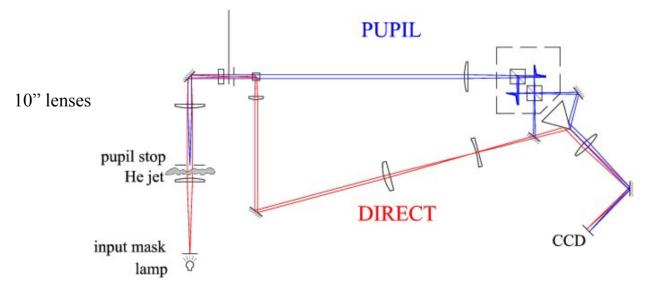


- Optical beam is
 - filtered: band-passed to define λ and $\delta\lambda$
 - chopped: synchronized with KFS system
- then split into a
 - Pupil image
 - Interferometer produces two interferograms
 - Direct image
 - Arranged with interferograms on single CCD array



Laboratory experiment — Optical layout

- Input mask is illuminated by Hg lamp
 - Input mask demagnified to have 30 µm-wide features
 - Original machined with 0.005" end-mill
 - *Demagnified overall dimensions*: 1000×200 μm²
 - Optics emulate input beam configuration from telescope
 - *F/30 beam collimated by* 200 mm *lens; angular features*: 150 μrad
- He-air jet used to introduce turbulent aberrations



Laboratory experiment — Interferograms

• Each pair of interferograms is divided into four quadrants

Unaberrated

Aberrated

- Top and bottom halves differ in phase by 90°
- Interferograms 1 and
 2 differ in phase by 180°
- Interferograms with turbulence show amplitude fluctuations
 - Amplitude fluctuations affect the two interferograms in the same sense
 - Phase fluctuations affect the two interferograms in the opposite sense

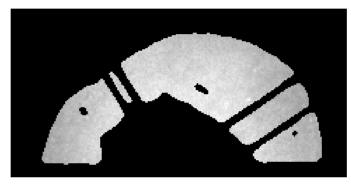
Interferogram 2 Interferogram 1

Laboratory experiment — *Discussion*

- In the presence of phase aberrations, which severely compromise direct imaging, interferometric imaging can yield sharp images
 - Rotation-shearing interferometers are insensitive to phase aberrations that are even about center of rotation
 - Spherical aberration
 - Defocus
 - Astigmatism
 - *QPI measures amplitude fluctuations separately from phase fluctuations*
 - Amplitude fluctuations are not included in image reconstruction, mitigating image degradation
 - This is much more important when imaging horizontally through near-ground turbulence, for example
- QPI technique is most powerful at highest angular frequencies
 - *QPI Modulation Transfer Function (MTF) is uniform out to cutoff frequency, while Direct Imaging MTF decreases (nearly) linearly out to cutoff frequency*
 - This difference is much more pronounced in the presence of aberrations
 - QPI MTF is unaffected by turbulent aberrations

Palomar Observations — Visibility modulus

• Visibility modulus is determined entirely by measured intensities and phase offset



- Visibility expected to be uniform across interferogram
 - Average measured visibility 0.61
 - Visibility degraded by:
 - Spectral bandwidth
 - Exposure time
 - Wavefront resolution
 - Amplitude fluctuations (second-order effect)

20-22 July 2002 Palomar observations — *Summary*

- Full quadrature-phase measurements made of Vega
 - Vega is unresolved, so V = 1 everywhere (image is a point)
- Measurements taken on Capella, with rotation shear error
 - Capella is a binary star system, with separation
 50 milliarcsec ≈ ×2 diffraction limit of Palomar 5 m at 700 nm
 - Effect of rotation shear error to be determined
 - Error ($\approx 1.5^{\circ}$) comparable to expected tolerance for error at medium to high frequencies
- Measurements taken on Mira, with rotation shear error
 - Mira is a giant star, with diameter 50 milliarcsec ≈ ×2 diffraction limit of Palomar 5 m telescope
 - Effect of rotation shear error is the same as that for Capella
- Successful integration of KFS camera, QPI, and Palomar telescope
 - Pupil position not well controlled, not always centered
 - Rotation shear error not corrected until third (final) night
 - New technique developed to correct rotation shear error

