Gas dispersal in disks observations and models

Ewine F. van Dishoeck

Leiden Observatory

From disks to planets, Pasadena

Outline

- Observations
 - CO millimeter
 - CO infrared
 - H₂ UV
 - H₂ mid-infrared
 - Other tracers
- Models
 - Viscous accretion and photoevaporation
 - Stellar EUV and FUV radiation
- Summary

Why gas important?

Affects dust dynamics

- E.g., sharp dust density gradients
- Needed for formation gas giants
 - Constraints on formation timescales
- Affects outcome of planet formation through circularization planetesimal orbits
 - Mass and eccentricity of planets
- Affects planet migration

Gas important when $M_{gas} \sim 10^{-2} M_{Jup}$ (10⁻⁵ M_{Sun}) or larger

CO millimeter: T Tauri stars

Classical T Tauri stars (~40 objects up to ~10 Myr)

- Koerner et al. 1995, Dutrey et al. 1996, 2003
- Large fraction of detections: 60-100%
- No trend with age
- Young (<1 Myr) transitional objects found with little CO</p>
 - BP Tau, V836 Tau
- Weak-line T Tauri stars (~15 objects up to 20 Myr)
 - **Duvert et al. 2000**
 - Small fraction of detections: ~10%

CO millimeter: Herbig + Vega excess

- Herbig Ae and IR excess stars (~50 stars up to 20 Myr)
 - **Zuckerman et al. 1995, Mannings & Sargent 2000, Thi et al. 2001, Dent et al. 2005**
 - Large fraction of detections (>60%) if f_{IR}>0.01 (disk opening angle >12°)
 - Small fraction of detections (~10%) if f_{IR}<0.01</p>
 - Decrease of R_{out} with M_{disk} => time?
 - No correlation R_{out} with spectral type
 - Inner gap or cavity common?

Dent et al. 2005
poster

Outer radius CO disk

No correlation with spectral type

Anti-correlation with age?

Dent et al. 2005

HD 141569 transitional disk: dust and gas

Massive gas-rich disk E ← **Debris disk** arcsec 0 -2 -4

IRAM PdB ¹²CO 2-1

Superposed on HST-STIS

-Is there gas in dust hole?-What is gas/dust ratio in rings?

Augereau, Dutrey et al. 2004, in prep

CO millimeter: main sequence stars

- Main sequence stars with dust and A-G spectral type (~15 objects at ~1 Gyr)
 - Yamashita et al. 1993, Dent et al. 1995, Greaves et al. 2000, Coulson et al. 2004
 - No detections down to 10⁻⁷ M_{Jup} (10⁻¹⁰ M_{Sun})
 - Stars nearby (down to 3 pc) => larger sensitivity than for pre-main sequence stars (typically 150 pc)

CO millimeter

Strengths

- Sensitive to low gas masses: $10^{-3} M_{Jup} (10^{-6} M_{Sun})$ at 150 pc
- Optically thin in dust continuum
- Line profiles resolved
- Imaging with interferometers
- Weaknesses
 - Lines often optically thick
 - CO abundance affected by freeze-out + photodissociation => difficult to infer gas masses
 - Confusion from surrounding cloud => interferometers
 - Only sensitive to outer disk >50 AU

CO chemistry in disks

Absence of CO does not mean absence of H₂

Stellar UV

Stellar + interstellar UV

Beta Pictoris: M_{disk} = 44 M_{earth}

Note: both CO and H₂ are only dissociated at 912-1100 Å

Kamp & Bertoldi 2000

CO infrared (4.7 µm)

Tauri + Herbig Ae stars (~20 objects)

- Najita, Carr et al. 2003, Brittain & Rettig 2003, Blake & Boogert 2004
- Large fraction (>80%) detected, including transitional objects V836, BP Tau

Q: how many sources detected in both CO IR and mm?

CO infrared

- Strengths
 - Sensitive to very small gas masses: 10⁻⁸ M_{Jup} (10⁻¹¹ M_{Sun})
 - Probes inner disk/planet-forming zones (<5 AU), as well as colder outer disk
- Weaknesses
 - IR continuum optically thick => need vertical T structure or (dynamically cleared) gaps
 - Limited velocity resolution (~10 km/s)
 - Probes only hot gas or surface layer=>no direct determination of total gas mass

H₂ UV

• H₂ UV absorption (~18 sources)

- Lecavelier-Estangs et al. 2003, Martin et al. in prep (poster)
- Absorption against continuum or OVI
- T_{ex}=400-700 K, N=10¹⁶-10²² cm⁻² => enormous sensitivity to small columns
- Decrease of N with age?
- H₂ UV emission (~13 sources)
 - Herzceg et al. 2002, in prep
 - T_{ex} ~2500 K, R<2 AU, pumped by Ly α

Direct probe of presence or absence of H₂, but no mass estimate

H_2 near + mid-IR

H₂ 2.1 μm vibration-rotation lines, ~10 objects?

- Weintraub et al. 2000, Bary et al. 2003, in prep
- Probes hot (~2000 K) gas in inner disk

H₂ mid-IR pure rotation lines, ~10 objects

- Thi et al. 2001, Richter et al. 2002
- Tentative detections in large aperture by ISO, but not confirmed by subsequent observations
- Direct probe of bulk *warm* (~100 K) gas in disks down to ~0.1 M_{Jup} at 150 pc
- Requires high spectral resolution to get line/continuum ratio

H₂ mid-IR with Spitzer

- H_2 emission seen toward ~1/4 of c2d objects, but may be largely extended
- Strengths and excitation temperatures comparable to those at off positions => need map
- H_2 not seen toward some transitional objects (HD 135344, β Pic, FEPS targets?)

Lahuis et al. in prep

Other gas tracers: hot molecules

Lahuis et al.., in prep

- Spitzer can detect gas-phase lines in spite of low spectral resolution!
- IRS 46 does not have envelope or hot core => hot gas must arise in warm layers of inner disks (within 10-20 AU)

Other gas tracers: IR

- [S I] 25 µm potential tracer of tenuous disks

Gorti & Hollenbach 2004

Other gas tracers: C and C⁺

- Lines can be searched for with APEX, Herschel, SOFIA

Kamp et al. 2003

Conclusions + questions observations

- Gas disks can persist up to 20 Myr
- Large range in gas disk dissipation time scales (<1 Myr to 20 Myr)
 - Related to initial conditions, environment, binarity?
- Do gas and dust disks disappear at the same time?
 - Difficulty in determining gas masses, proper gas tracers
- Do inner and outer disk disappear at the same time?
 - Search for CO mm and IR in the same objects
- Is disappearance a gradual process or abrupt, within ~10⁵ yr?
 - Search for transitional objects

Need statistics on larger samples!

Gas/dust mass evolution

Hollenbach 2004

Models of gas disk dispersal

-Ignore in this talk stellar encounters, dynamical clearing by binaries, stellar winds, planet formation and strong external EUV/FUV as in Orion

Hollenbach et al. 1994, 2000, 2004

Disk dispersal

- Mass loss through
 - Accretion onto central star
 - Photo-evaporation
- Clarke et al. (2001) and Matsuyama et al. (2003) models
 - Viscous evolution of disk
 - Photoevaporation at R>R_g where gas is no longer gravitationally bound
 - R_g~few AU for EUV photons, >20 AU for FUV photons
 - Opening of gap at R_g when $(dM/dt)_{accr} = (dM/dt)_{p.e.}$
 - Rapid draining of material within R_g
 - **Gradual dispersal of material outside R**_g

UV switch model

No p.e.

With p.e.

Clarke et al. 2001

Evolution of disk structure

Surface density

Clarke et al. 2001

Origin EUV ionizing flux

EUV from accretion shock

Absorbed by accreting column

EUV from coronal X-rays

Not large enough

EUV from chromospheres of magnetically active stars

Limited data but use He II/CIV as diagnostic

=> Consider FUV heating

FUV flux T Tauri stars

STIS/FUSE data

Much of the flux is in Ly α H₂ and CO photodissociated only at 912-1100 Å

- Few direct measurements
- Enhancements w.r.t. interstellar field: $I_{UV} \sim 10^5$ at 10 AU, 10³ at 100 AU
- UV excess decreases with time as t⁻¹?
- Need I_{UV}~3000 to shrink disk on ~10 Myr timescale (Adams et al. 2004)

Kamp & Sammar 2004 Bergin et al. 2003 Van Zadelhoff et al. 2004

FUV heats gas in surface layers

Gorti & Hollenbach 2004, 2005: inner disk 0.5-20 AU
Jonkheid et al. 2004, : outer disk 50-400 AU
Kamp & Dullemond 2004

Red= 2000 K Green= 100 K Blue= 30 K

- T_{gas} >> T_{dust} at surface, up to few thousand K
- Presence or absence of PAHs affects temperature
- Wind can be launched, even inside R_g; stronger in outer disk
- Density ~10⁶ cm⁻³ at base => $dM/dt \sim 10^{-9} M_{sun}/yr$ at 20 AU

Gas temperature in flaring disk: effects of dust settling

- -Black lines: T(dust) contours -White lines: T(gas) contours -Colors: T(gas)
 - Dust settling results in lower gas temperatures at surface, but warm gas extends to deeper in the disk

Jonkheid et al. 2004

Conclusions

- No direct observational tracers of total (warm + cold) gas mass
 - Need to test various gas tracers against models, especially in transitional stage
- Some gas disks can persist up to 20 Myr, but large range in lifetimes
- Better observational statistics needed to
 - Constrain lifetime inner + outer gas disk
 - Compare lifetimes gas + dust disks
- Accretion + photoevaporation may explain disk lifetimes of 1-10 Myr, but model results depend critically on adopted EUV and FUV fields