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Outline of talk
• Introduction
• I. Geometry of circumstellar disks, 

flaring vs. self-shadowed
• II. Dust evolution in circumstellar disks

– “classical” (spatially unresolved) IR 
spectroscopy 

– Interferometrically resolved spectroscopy
• conclusions



ESO VLT Interferometer



MIDI at the VLTI

• Two-element beam combiner
• Measures spectrally resolved visibilities 
• ~8 – 13.5 micron
• Spectral resolution 30 or 250
• maximum spatial resolution 10-20 milli-

arcsec
• PI: Christoph Leinert (Heidelberg)



HAe stars

• Intermediate mass PMS stars
• Spectral type early F to late B
• “Class II”
• Passive circumstellar disks that no longer 

accrete significantly (~10-8 M yr-1)
• Ages ~105 – 107 yr
• Size and brightness ideal for first science with 

VLT Interferometer



I. Disk Structure

• Mm interferometry (~100 AU)
• Optical/NIR scattered light (~100 AU)
• High resolution spectroscopy (<1 AU)
• SED modeling (all scales, but indirect)
• Lacking: spatially resolved observations 

of the dust emission on scales between  
0.1 and 100 AU (0.001 – 1 arcsec)

• Large telescope imaging, interferometry



Division into two groups: flaring 
versus flat (self-shadowed) disks?

Group 2

Group 1

Meeus et al. 2001

I

II

“flared”

“flat”



Flaring disk around 2 M star 

Dullemond, Dominik and Natta

• Inner rim is 
“puffed-up”

• Causes additional 
near-IR radiation

• Shadowed region



Geometry of protoplanetary disks

• Flaring or 
flat disks

• Flat disks 
are self-
shadowed

• Evolutionary 
link?

DullemondDullemond (2002), (2002), 
AckeAcke et al. 2004et al. 2004

Time?



Visibility simulations: flaring 
versus self-shadowed

FlaringFlaring SelfSelf--shadowedshadowed

Van Van BoekelBoekel, , DullemondDullemond et al.et al.



Observed 
spectra and 
disk model 

SED(!) fits to 
MIDI sample

Dominik et al; 
Leinert et al.



Size of 
disk in 
mid-IR

Leinert et al. 2004



IR spectral slope and disk “size”

Leinert et al.

Group I

Group II



• Q: Is the observed difference in SED (group I, 
group II) caused by a difference in disk 
geometry (flaring, flat)? MIDI: “YES”

• Current generation of models reproduce first 
measurements reasonably

• Much work ahead modeling individual sources
• Measurements at multiple baselines

Structure of circumstellar disks



51 Oph: very different disk structure
• Gas-phase 

molecules in 
near-IR

• puffed-up inner 
rim missing

• Disk covering 
angle only 4 deg

• Very compact 
@ 10 micron!



VLTI observations at        
10 μm of HD100546   

using MIDI

• Emission almost fully resolved on a scale of 20 
milli-arcsec (!)

• “Wall” at ~10 AU? Bouwman et al. 2003, Liu et al 
2004

Compact 

Extended 
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• From “pristine” (sub-micron sized, amorphous 
grains, ISM) dust to “evolved” (micron sized 
grains, partly crystalline, comets) dust.

• How?
• Where?
• When?

II  Dust processing



Processing of silicates: 
amorphous crystalline

• Vaporisation, recondensation above about 
1400-1500 K (forsterite, Mg-rich)

• Chemical equilibrium reactions T > 1100 K
– conversion of forsterite to enstatite

• Thermal annealing of amorphous ISM 
silicates, Fe-rich (?)  T > 900 K

• Annealing in shocks?



Crystallization and Mixing

thermal annealing,
Chemical equil.
reactions

accretion

radial mixing
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Shock annealing?

C. Dominik



Distribution of silicates

Forsterite Enstatite Fe-rich amorphous 
olivines,pyroxenes

Gail 
(2004)



HD 142527

Crystalline silicates

Large grains

UX Ori

“Pristine” “Evolved”

Dust processing at 10 micron

Small amorphous grains



10 micron spectroscopy: 
limitations

• Sensitive to warm dust only (above ≈ 200 K)
• Predominantly probes the warm surface layer
• Sensitive to grain sizes upto a few micron
• Small wavelength range (~ 8 – 13.5 micron): 

little information about temperature distribution 
of dust



10 micron survey (spatially unresolved)

• 24 stars
• 1.5 - 3.5 M
• 105 – 107 yrs
• Age-mass relation
• ESO 3.6/TIMMI2 

7.8-13.4 micron  
R=160           
SNR 20-100



The sample star spectra



Shape vs. strength of silicate feature

Also in T-Tauri stars
Meeus et al. 2003, A&A, 409, L25
Przygodda et al. 2003, A&A, 412 L43

Spitzer!?

Van Boekel et al. 2003, A&A, 400, L21



Compositional fits

• Optically thin model 
• Olivine, Pyroxene, 

forsterite, Enstatite, 
Silica, PAH

• Distribution of hollow 
spheres (DHS)

• 0.1 μm (“small”) and 
1.5 μm (“large”) grains 

• Single temperature 
(Uniform composition)

olivine

pyroxene

forsterite

enstatite

silica

PAH



• Spherical grains with central cavity
• Average over the volume fraction                      

occupied by the inner cavity, keeping                          
the mass of the particles constant.

• Statistical approach to model realistic,                    
irregular dust particles

• Allows opacities of large grains (outside Rayleigh limit) 
to be calculated.

• Min, Hovenier & De Koter 2003, A&A, 404, 35              
Min, Hovenier & De Koter 2005, A&A, in press,                   

astro-ph/0503068

Distribution of Hollow Spheres (DHS)
(Michiel Min)



'Shake the box'
Make a linear least square fit to obtain:

✗The abundances of all dust species  
(growth, crystallinity)

✗The average temperature of the dust grains



Results (I): growth & crystallization

• All stars have 
grain growth, 
most stars 
dominated by 
large grains

• All highly 
crystalline 
sources have 
much grain 
growth



Results (II): crystallization vs stellar mass

• More massive stars 
(M>2.5 M , L>60 L )
show highest 
crystallinity

• Below 2.5 M (60 L )
no relation between 
mass, crystallinity



• Young stars are 
also most massive 
(most luminous) 
ones

• Below 2.5 M no 
obvious relation

• Suggests that 
crystallization 
happens in early 
(active?) phase

Results (III): crystallization vs PMS age



Spatially resolved spectroscopy (MIDI)

Whole 
Disk

Inner disk Outer disk



• Crystalline grains concentrated 
in central disk regions 

• Outer disks can be “pristine”
while inner disks are “evolved”.

• In disks with low crystallinity, 
crystals seem restricted to 
innermost disk region

• In disks with high crystallinity, 
crystals are present also further 
out.

• HD 142527: inner disk mostly 
forsterite, further out more 
enstatite

Spatial distribution of the dust

MIDI @ VLTI Nature, 432, 479



Disk model with non-uniform composition

• 2D radiative transfer, self 
consistent vertical structure

• Mixture of carbon and 
silicates

• T > 1000 K crystalline,          
T < 1000 K amorphous, 
no radial mixing

• For more crystalline disks, 
include radial mixing

• See poster by Meijer, 
Dullemond et al.

Total disk,
observed

Inner disk,
observed

Total disk,
model

Inner disk,
model

Joke Meijer



VLTI/MIDI observations of 
HAe stars

• Inner disks (~1 AU) have:
– higher fraction of silicates is crystalline (40-100%) 
– larger silicate grains than further out

• more forsterite in inner disk, more enstatite further 
out in HD142527

•• Consistent Consistent with:
– Chemical equilibrium processing+ thermal annealing  in 

inner disk
– Radial mixing to move crystals to larger distance 

• What causes large star-to-star differences?



Consequences for spatially 
unresolved analysis?

• Composition not homogeneous,
• Crystalline silicates hotter than amorphous 

silicates (more so in low crystallinity
sources than in highly crystalline sources)

• Simple test: fit full disk spectra, demand 
that Tcrystalline > 1000 K

• See if trends remain



growth & crystallization, Tcrystalline > 1000 K



Crystallization vs M*, Tcrystalline > 1000 K

Derived crystalinity lower, 
trends remain!



MIDI observations of T Tau stars

Same trend as seen in HAe stars!

Leinert



Conclusions
• Current generation of disk models yields qualitative 

agreement with spatially resolved thermal IR emission
• Need for detailed fitting of individual sources, multiple 

baselines
• Refinement/reconsideration of disk models

• Growth is “easy”, happens “everywhere” (< 10-20 AU)
• Crystallization in innermost disk regions, subsequent 

radial transport outward, efficiency varies
• Crystallization (radial mixing) happens predominantly 

in active or early passive disk phase.



Would you like to compare?

• To obtain “DHS” opacities, please send a 
request to Michiel Min 
(mmin@science.uva.nl)

• Min, Hovenier & De Koter 2005, A&A, in press,           
astro-ph/0503068





Degeneracies





Shape vs. strength of silicate feature

Also in T-Tauri stars
Meeus et al. 2003, A&A, 409, L25
Przygodda et al. 2003, A&A, 412 L43

Spitzer!?

Van Boekel et al. 2003, A&A, 400, L21



Dust species

Amorphous Olivine

Amorphous Pyroxene

Crystalline Forsterite

Crystalline Enstatite

Silica

PAH


