Disk Chemistry T. J. Millar,

School of Physics and Astronomy, University of Manchester

Protoplanetary Disks

Thin accretion disks from which protostar forms

Inflow from large radii (100 AU) onto central protostar

Temperature of outer disk is cold (10 K)

```
n(H_2) \sim 10^{10} - 10^{15} \text{ cm}^{-3}
```

Molecular gas is frozen on to dust grains in outer disk

Temperature of inner disk is \sim 100 K at 10 AU, \sim 1000 K at 1 AU

Ices evaporate in inner disk

Chemical Processes

Ionization – X-rays, UV photons (direct + scatttered + IS), CRPs, CR-induced photons, radionuclides

Ion-neutral

Neutral-neutral

Two-body and three-body

Gas-Grain interaction – accretion, surface chemistry, evaporation, mutual neutralisation

Photodissociation – lines and continuum – photoionization

Physical Processes UV radiative transfer in 2D H_2 self-shielding, C⁺/C/CO transition UV excess ? Lyman alpha ? Grain opacity composition, size distribution Gas cooling - O, C⁺, C, CO Dust heating/cooling – photoelectric emission gas-grain collisions Time-dependent or steady-state chemistry ? MAN Stellar heating ?

Dust model

Dust properties affect

- UV intensity absorption + scattering
- Grain temperature re-processing stellar radiation
- Gas temperature grain photoelectric heating and gas-grain collisions

The University of Manchester

 H/H_2 ratio – grain formation of H_2

Excitation of H_2 on formation

Silicates, carbonaceous grains, water ice

Size distribution from Weingartner & Draine, MRN

Dust coagulation and settling

Initial Conditions

Steady state disk structure

Molecular cloud abundances – gas and ices

Effects of accretion shock ?

Temperature profile

models have midplane temperatures which range from 1500 K (Finocchi et al) to 680 K (Markwick et al) to 280 K (Aikawa et al) at 1 AU

Radiation field – Scaled IS, BB or T Tau stellar ?

Chemical models

Early - 1996-1999

One dimensional; Hayashi minimum solar mass, semi-analytic, Bell et al

Gas-grain interaction not always included

Middle - 1999-2003

1 + 1 dimensions; Goldreich & Chang; D'Alessio, Bell et al

Gas-grain interaction always included

Ionization by UV, X-rays, CRs, radionuclides

Late – 2003-present

1 +1 dimensions - at 2500 grid points inside 10 AU

Transport included; radial mixing, vertical diffusion

Lyman alpha radiation

Non-stationary disks

Calculation of emergent line profiles

UV radiation

1 + 1 dimensional field

Radiation from central star – radial direction

IS radiation field + scattered stellar radiation – vertical direction Over-estimates the true UV field

UV excess – adopted optically thin free-free radiation from fit to spectrum of TW Hya

Density and temperature profiles

Hotter surface layer Thicker disk

Some processes – deuterium fractionation, freeze-out, thermal desorption – very sensitive to low T regime Some processes – H_2 reactions – very sensitive to high T regime MANCH

The University of Manchester

Vertical temperature distribution

UV excess causes greater p.e. heating, and temperatures of about 1000K at the surface

Heating causes expansion of disk vertically

Dust and gas temperatures decouple

Density distribution

Molecular Ice Distributions

Initial conditions taken From dark interstellar cloud model – with freeze-out

Time-dependent chemistry calculated at about 2500 grid points inside 10 AU

Markwick, Ilgner, Millar, Henning, Astron. Astrophys., 385, 632 (2002)

Molecular Distributions

Markwick, Ilgner, Millar, Henning, Astron. Astrophys., 385, 632 (2002)

Disk ionization degree at 1 Myr

MANCHESTER 1824 The University of Manchester

Chemical differentiation in zdirection

Surface layer (hot):

PDR-like chemistry (X-rays and UV), H^+ , He^+ , C^+ , CN, C_2H

Intermediate layer (warm):

Rich molecular chemistry (X-rays), surface reactions, desorption,

CS, CO, NH₃, H₂CO, HCO⁺, HCNH⁺, NH₄⁺, H₃CO⁺, S⁺, He⁺

Midplane (cold):

Dark chemistry (CR and RN), 'total' freeze out, Metal ions, H_3^+ , HCO⁺, N_2H^+ , H_2D^+ , D_2H^+ , D_3^+

Cold, depleted gas drives multiple deuteration

(See poster by Dominik)

Vertical Diffusion

Radial accretion No vertical mixing

Radial accretion Vertical diffusion

Ilgner, Henning, Markwick, Millar, Astron. Astrophys., 415, 613 (2004)

Mixing in Turbulence Driven by MRI

Effects of Lyman Alpha

Only particular molecules have cross-sections which absorb Lyman alpha, for example HCN and $\rm H_2O$ but not CN and CO

E Bergin et al. ApJ, 591, L159 (2003)

Effects of Lyman Alpha

Effects of Lyman alpha on radial fractional abundances

E Bergin

Modelling scheme

Density structure of the envelope in AB Aur

₩HCO⁺(1-0): $n_0 = 4 \cdot 10^5 \text{ cm}^{-3}$ 𝔅(3-2)/ (1-0): $p=1 \pm 0.3$ ₩CS(5-4): only "clumpy" model works! So Total mass: $\sim 1 M_{sun}$ Se Accretion rate: $\sim 4.10^{-8} M_{sun} / yr$ Se Lifetime: <25 Mr MANCHEST

The University of Mancheste

Future

From models of IS chemistry:

Better understanding of gas-grain interaction - binding energies, surface chemistry, desorption

Influence of PAHs on chemistry

Key reaction rate coefficients

Model calculations:

Ability to compare models quantitatively - same disk model but different chemistries; same chemistry but different disk models

Better exploration of phase space

Realistic physical models

Stellar UV including Lyman alpha

Grain opacity including growth and sedimentation

Diffusion, turbulence, mixing

