Disks: The Early Years

Neal J. Evans II The University of Texas at Austin

Rotating Collapse forms Disks

Features: Dusty envelope Rotation Disk Bipolar outflow

R. Hurt, SSC

Disk Origins

- How do disk properties depend on:
 - Properties of collapsing envelope
 - Nature of the forming star or substar
 - Nature of building blocks (dust, ice, gas)
- How early can we observe them?
- What do processes in early disks affect?

Envelope properties

- Studies of individual, isolated cores
 - Masses around 2 M_{sun}
 - Very low turbulence
 - Centrally peaked
 - Look like Bonnor-Ebert spheres
 - Sequence of increasing central density
 - Approach singular isothermal sphere
 - But do they ever reach it?

Initial Conditions: Summary

- Isolated cores
 - Centrally condensed
 - Very cold in center
 - Molecular tracers depleted
 - Can be modeled as BE spheres: $\sim 2 M_{sun}$
 - Sequence of increasing central density
 - Most condensed (e.g., L1544) can be power-law
 - 3D modeling confirms basic results of 1D
 - Doty et al. (2005)

Collapse

- If initial conditions approach power-law,
 - Collapse from singular isothermal sphere (SIS)
 - Or do earlier inward motions modify?
- Simple models
 - BE spheres with increasing central density
 - Transition to collapse of SIS
 - Model dust, gas energetics, chemistry, radiative transfer, observing process

Observations of B335 Three CS transitions

Red line is from chemical model.

Evans et al. 2005, submitted

Outstanding Questions

- Do dust and gas tracers tell the same story?
 - Not exactly
 - Dust tracers prefer much smaller infall radius
 - Or more abrupt change in power law at r_{inf}
 - Dust models need to incorporate more facts
 - Inner envelope and disk
 - Changes in dust properties from icy mantles
 - Freeze-out more in dense, cold regions
 - Evaporate in inner "hot" core

- Hot core structure for luminous central source; zones of different ices. -For low luminosity sources, icy dust may reach the disk.

Summary: Collapse

• Collapse models predict observables

- Characteristic "blue" line profiles
- These are seen in many, but not all cores
- Self-consistent models reproduce observations
- Needs work:
 - Chemical rates
 - Alternative dynamics
 - Environmental effects
 - Dust properties as function of radius, time, ...
 - 2D, 3D models, effects of rotation, outflows

Rotation

- Rotation rates
 - Most are slowly rotating
 - $1 \ge 10^{-14}$ to $1.3 \ge 10^{-13} = 10^{-13}$ (Goodman et al. 1993)
 - Many upper limits
 - Centrifugal Radius (R_C) depends on Omega²
 - Large range of R_C may be possible
 - Factor of 170
 - Consequences ?
 - Disk radius
 - Disk mass?
 - Rate of disk evolution?

Early Disks

- What is expected?
- Disk radius strong function of time (t³)
 - Early disks should be small
 - Disks should show strong evolution

Small scattering cone and outflow

At the velocity of the nearby core, L1014

JHK Image

J, H, K Image of L1014 KPNO 4-m + Flamingos J (19.7) H(20.9) K(19.4) Huard et al. in prep. Preliminary reduction

Faint conical nebula to north with apex on IRAC source.

BIMA peak to south likely obscures southern lobe.

Not a background source.

Summary

- Disks can be detected very early
 - Disks of very low mass
 - $-~M_{d} \sim 4 \; x \; 10^{-4} \; M_{sun} \; (R_{d} / 50 AU)^{0.5}$ for L1014 disk
 - Easily detected (S/N about 50 to 100)
- Disks surround objects of very low L
 - Luminosity of L1014 is about 0.1 L_{sun}
 - Relevant to formation of substars?
 - New regimes for disks, planets

Remaining Issues

- Can detect in MIR, but disk is optically thick
- Need mm/smm to be sure of masses
 - Hard to separate disk from inner envelope
 - Looney et al. (ApJ 529, 477)
 - Need interferometer/camera at same wavelength - SMA, CARMA, ALMA
 - Need to measure rotation, early planet formation?
 - Dynamics, gaps, ...
 - Need sensitive, high resolution (spatial and spectral)
 - ALMA, MIR ($R \sim 10^5$)

B335 with PdBI Both 1.2 and 3 mm Multi-config. Resolution of ~0.5"

Envelope + disk fits better Easier to see at 1 mm

How do the building blocks evolve?

- Do dust and ice in the cloud evolve?
 - Extinction law (T. Huard)
 - Ice features
- How do they evolve in collapsing cores?
 - Further freeze-out
 - Evaporation as luminosity rises
- How do they evolve in disks?

Background sources: quiescent clouds

Mapping the Ice Distribution Abundance of ice varies Density Increases as n increases 0.8 CRBR 2422.8-3423 • Nature of ice changes Pure CO ice CO_2 ice 20 0.0 0 $5.0{\times}10^3$ $1.0{\times}10^4$ Distance to Oph-F MM2 [AU] 1.5×10⁴ Pontoppidan et al.

Outstanding Questions

- How much grain growth/ice mantle growth
 - In cloud before collapse?
 - During collapse?
- Effects of ice evaporation?
 - Reversible, or are refractory ices left?
- What gets delivered to disks?
 - Function of L_{star} , radius in disk, environment

Summary

- We can begin to study early disks
 - Spitzer can detect them
 - Need CARMA/ALMA/SMA to study
 - Need to understand transition from
 - Envelope to disk
- Dust evolves continuously
 - In cores before collapse (growth/freeze-out)
 - During collapse (heating/evaporation)
 - In disk (further heating, transport, coagulation)