Mm/radio gas observations of disks

Claire Chandler, NRAO

- · Overview of submm/radio emission from molecules
- Recent results on disk kinematics and the implications for pre-main sequence star and disk properties
- Separating disks and envelopes in embedded protostars using absorption spectroscopy

General properties of molecular emission

- At radio through submm wavelengths molecular emission is typically from cool gas, ~20–40K
- Current arrays are able to resolve circumstellar disks both spectrally (*R*≥10⁶) and spatially (θ_b~1") at radii where most of the disk mass resides ⇒ can use the kinematics to disentangle *M* from inclination, *i*
- Some problems using molecular emission for studying disks:
 - Radiative transfer is not as simple as for dust because of the molecular partition function
 - Chemical and physical processes (e.g., freeze-out) dramatically affect abundances as a function of T and ρ
 - Some lines of common molecules are optically-thick, and do not trace all the mass

- Dartois et al. observe ¹²CO(2–1)/(1–0), ¹³CO(2–1)/ (1–0), and C¹⁸O(2–1)
- ¹²CO samples 2–4 scale heights
- ¹³CO(2–1) samples ~1 scale height
- ¹³CO(1–0)/C¹⁸O(2–1) sample disk midplane
- Evidence that the outer layer is warmer (~30 K) than the midplane (~13–20 K)

Final comment on T Tauri disks

- Only the most massive TT disks can be detected in molecules because of typical depletions ~10–100
- Will have to wait for ALMA to know whether these techniques will work for lower mass disks as well

- Interpretation becomes more model-dependent: e.g., CS(7–6) emission from L1551 (Takakuwa et al. 2004):
 - High-velocity gas consistent with rotation about central mass $0.15M_{\odot}$, but mass from binary motion is $1.2M_{\odot}$
 - Low-velocity gas may have contributions from outflow and/or infall + rotation in the envelope

Requirements for absorption spectroscopy

- 1. Disk must be massive to make the dust emission optically-thick, so that $T_{\rm B}$ is higher than $T_{\rm ex}$ in foreground cloud
- 2. Need $\theta_B \sim \theta_{disk} < 1$ "
- 3. $\tau_{dust} \propto \nu^{1-2} \Rightarrow$ need high ν
- 4. Need a high-dipole moment molecule (high n_{crit}) and a high transition likely to have $T_{ex} < T_{B,dust}$ for absorption (either due to low T_{kin} or sub-thermal excitation)
- SMA gives #2 and #3
- #1 is the hardest requirement to meet! Only possible for a handful of low-mass sources

IRAS 16293–2422

- Class 0 binary protostar in ρ Oph
- Component B has optically-thick dust emission with $T_B{=}S\lambda^2/2k\Omega{=}38$ K @ 300 GHz on scales of ~1"
- Good molecules to try: H₂CO, HCN, HCO⁺, SO, CS, etc.
- Set out to detect infall using $H_2CO(4_{13}-3_{12})$ @ 300.8 GHz (E_{upper} = 48 K), but blended with methyl formate emission

Chandler et al. (poster)

Conclusion

- With higher s/n and multiple transitions will be able to invert the absorption to derive contributions from infall and outflow on size scales of the dust emission
- For other results on IRAS 16293–2422 see Chandler et al. (poster)
- Other submm/radio papers at this meeting investigating gas in disks:
 - Lin et al.
 - Andrews & Williams
 - Dent
 - Dominik & Ceccarelli
 - Patience et al.
 - Piétu et al.