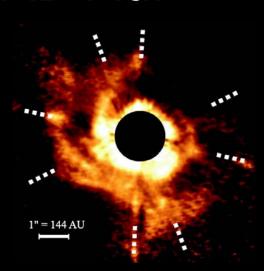
SMA Observations of the Circumstellar Disk of AB Aurigae

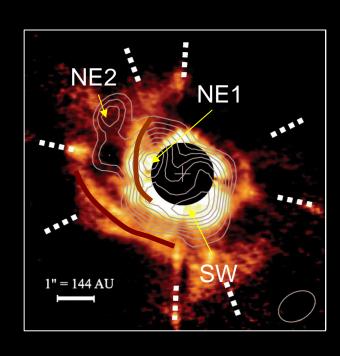

Shin-Yi Lin
National Tsing Hua University

Nagayoshi Ohashi (ASIAA) Jeremy Lim (ASIAA) Paul Ho (CfA)

2005/3/7 Pasadena

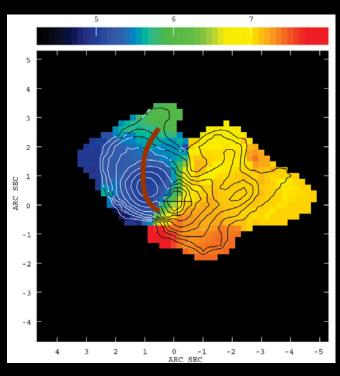
Introduction Circumstellar Disk of AB Aur

- AB Aurigae
 - Herbig Ae star (A0 Ve; Distance: 144pc; 2.5 M_{sun})
 - Age: 2~5 Myr old
- Previous Observations
 - ¹³CO (2-1): OVRO (~4" in Mannings 1997; 2"×1.7" in Corder 2005)
 - Keplerian Rotating Disk
 - Optical: HST (Grady 1999)
 - N-S asymmetric structure
 - Near-IR: 1.6 μm Subaru coronagraphic image (Fukagawa 2004; afternoon session today)
 - Spiral-like structure
- SMA (Sub-Millimeter Array) Observations
 - 12CO (3-2) and 345 GHz dust continuum
 - 3 tracks of different array configurations to achieve ~1"×0.7" spatial resolution
 - Velocity resolution of CO (3-2) observation: 0.17km/s



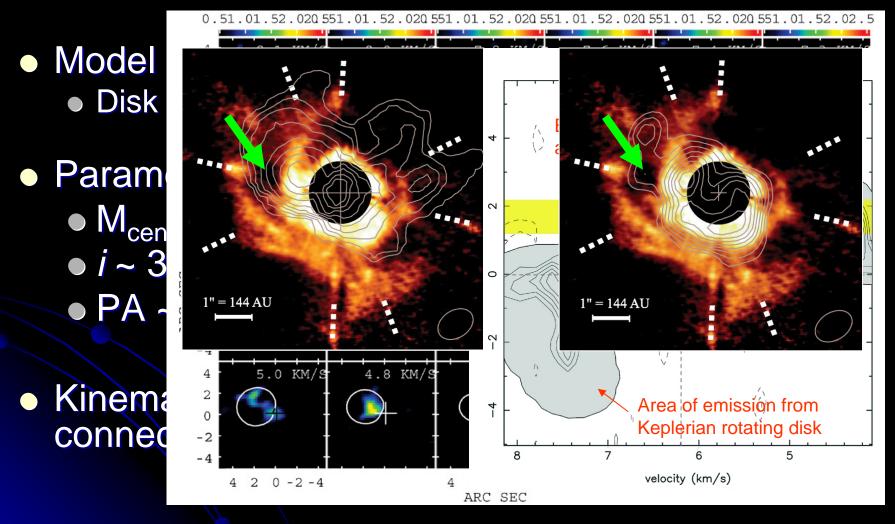
Outline

- Continuum emission at 345 GHz (0.85mm)
 - Dust disk has complex structure (three distinct peaks)
 - Does not peak at stellar position
 - Two peaks may coincide with most prominent spiral arm in Subaru image
 - Other peak between 2 arms
- Molecular gas (¹²CO (3-2))
 - Gas disk has complex structure (two distinct peaks)
 - Main peak at stellar position
 - Secondary peak coincides with most prominent spiral arm
 - Rotation about disk minor axis; but more complex motion
 - Evidence for non-Keplerian rotation


Dust Continuum at 345 GHz

- Global properties:
 - Size: 450 AU × 280 AU; PA: 48.526°
 - Disk mass (gas + dust): 0.0079 M_{sun}
 (T~40K, κ~ 0.0285 cm² g⁻¹⁾
- Structures:
 - NE-SW elongation
 - Emission does not peak at the center
 - 3 peaks
 - NE1 (>10σ), 140AU from center
 - NE2 (>5σ), 370AU
 - SW (>10σ) , 100AU
 - There is connection between NE1 & NE2
 - SW may coincide with inner region of most prominent spiral arm NE1 may also coincide with same spiral arm (but with slight displacement)
 - NE2 located between two prominent arms

¹²CO (3-2) Emission


- Global properties:
 - Main peak at stellar position
 - Secondary peak coincides with most prominent spiral arm (does not coincide with any dust peaks)
 - Largest velocity gradient along major axis
 rotation
 - Velocity gradients also along minor axis
 non-circular motion

Color: Mean velocity

Contour: Integrated intensity

Deviation from Keplerian Rotation

Yellow arrows indicates the deviation from Keplerian motion.

Disk dynamics

- Excitation of complexity on the disk
 - Gravitational instability

$$Q = \frac{c_s \kappa}{\pi G \Sigma}$$

- For axisymmetric disk, $1.5 \le Q \le 2.0$ (Nelson et al. 1998), the spiral structure can be produced and sustained
- In AB Aur case, Q?
 - Q ~ 2 to 17 (Fukagawa 2004)
 - T ~ 40 K, Σ ~1.19 g/cm², Q ~ 13
 - T ~ 15 K, Σ~0.84 g/cm², Q ~ 2
- Other possibilities
 - Giant planet at 250AU to excite the 2 main spiral arms
 - Encounter with other stars

Summary

- Dust disk
 - Complex structure (3 distinct peaks)
 - Not centrally peaked
 - Two brightenings coinciding with most prominent spiral arm
 - Another brightening between two spiral arms
- Molecular gas disk [¹²CO (3-2)]
 - Complex structure (2 distinct peaks)
 - Main peak at stellar position
 - Secondary peak coincides with most prominent spiral arm
 - Most of emission consistent with Keplerian rotation
 - Non-Keplerian rotation between two most prominent spiral arms