How Shadowing and Illumination in Disks Affect Planet Formation

Hannah Jang-Condell
Carnegie Institution of Washington, DTM

Dimitar D. Sasselov (CfA)
Overview

• Analytic models indicate that disks are not vertically isothermal (e.g. Calvet, D’Alessio; Chiang & Goldreich)

• Vertical temperature structure is primarily due to stellar irradiation

• Protoplanets perturbing the disk can cause local temperature variations

• Temperature variations affect planet formation
Temperature Structure

- Viscous heating at the midplane
 - $\alpha_{SS} = 0.01$
 - $dM/dt = 10^{-8} M_{\text{sun}}/\text{yr}$
- Stellar irradiation at surface
 - $0.5 M_{\text{sun}}$
 - $4000K$
 - $2 R_{\text{sun}}$

Jang-Condell & Sasselov 2004
Disk Perturbed by Planet

- Hydrostatic equilibrium
- Surface looks like a depression or well
- Shadowing (cooling) on near side, illumination (heating) on far side
- Consider planets below gap-opening threshold at 0.5 - 4 AU
Calculation of RT

- Frequency separation
 - Short λ: κ_P, τ_s
 - Long λ: κ_R, τ_d

- For 1-D plane-parallel
 $$\sigma T^4 = \pi B(\tau, \mu)$$

- Perturbed surface:
 $$\sigma T^4 = \pi B_{\text{tot}} = \int B(\tau, \mu) \, \nu \, d\Omega$$
 - Sum over the surface
Synthetic Images: 4 AU, 30 microns

- At 100 pc,
 - need mas resolution
 - planet is 40 mas from the star
- Unlikely to be observable
- A gap may be resolvable (large planet)
Observability

- At 100 pc,
 - need mas resolution
 - planet is 40 mas from the star
- Unlikely to be observable
- A gap may be resolvable (large planet)

http://www.eso.org/projects/alma/science
Effects on Planet Formation

• May not be observable, but can affect:
 – Ice Formation
 – Planetary Migration
Ice Formation

• The snow “line” (170 K) in a 1-D disk occurs at 2.7 AU (Hayashi 1981)

• Model disk:
 – Snow transition begins at 0.6 AU
 – Midplane 1.3 AU
 – Surface 3.3 AU
Ice sublimates at 170 K (solid contour)
Define a hot (cold) spot as a region that is above (below) 170K where it would normally be below (above) 170K
Implications for Planet Growth

• Moving the snow line
 – Ice may be able to condense closer to the star than previously expected

• Cold and Hot spots
 – Condensation/sublimation of ice
 – Enhancement/decrement in abundance of solids
 – Increase/decrease in accretion rate
 – Increase/decrease in volatile fraction
Type I Migration

- Balance of tidal torques depends on pressure gradient in the disk
- A local inversion of the temperature gradient due to shadowing and illumination effects may slow or reverse inward migration
Migration Rates

• Type I migration rates are sensitive to changes in the pressure gradient
• Local temperature inversion slows migration
• Up to a factor of 2 increase in migration timescale
Summary

• Temperatures near a protoplanet are sensitive to shadowing/illumination. This affects:
 • Growth of protoplanets
 – Composition of disk material accreted
 – Rate of growth
 • Planet migration rates
 – Can slow Type I migration
Future Prospects

• Varying parameters:
 – $1 \, M_{\text{sun}}$ -- Planet formation in Solar System

• Observable signatures of shadowing/illumination
 – Distinguishing planets, clumps

• Modelling disks with inner holes or gaps
 – Hot inner walls, self-shadowing

• Numerical simulations
 – Non-linear effects
 – Feedback, self-consistency
Neglected Physics

- Dynamical interactions
- Accretion onto the planet
- Non-linear effects (i.e. density waves, gap-opening)
- Self-consistency -- response of density to temperature
- RT between hot/cold spots