From Disks to Planets March 10, 2005

How Shadowing and Illumination in Disks Affect Planet Formation

Hannah Jang-Condell Carnegie Institution of Washington, DTM Dimitar D. Sasselov (CfA)

Overview

- Analytic models indicate that disks are not vertically isothermal (e.g. Calvet, D'Alessio; Chiang & Goldreich)
- Vertical temperature structure is primarily due to stellar irradiation
- Protoplanets perturbing the disk can cause local temperature variations
- Temperature variations affect planet formation

Temperature Structure

- Viscous heating at the midplane
 - $-\alpha_{\rm SS} = 0.01$
 - $dM/dt = 10^{-8} M_{sun}/yr$
- Stellar irradiation at surface
 - 0.5 M_{sun}
 - 4000K
 - $-2 R_{sun}$

Disk Perturbed by Planet

- Hydrostatic equilibrium
- Surface looks like a depression or well
- Shadowing (cooling) on near side, illumination (heating) on far side
- Consider planets below gap-opening threshold at 0.5 - 4 AU

Calculation of RT

• Frequency separation - Short λ : $\kappa_{\rm P}$, $\tau_{\rm s}$ - Long λ : $\kappa_{\rm R}$, $\tau_{\rm d}$ • For 1-D plane-parallel $\sigma T^4 = \pi B(\tau,\mu)$ • Perturbed surface: $\sigma T^4 = \pi B_{tot} = \int B(\tau, \mu) \nu d\Omega$ – Sum over the surface

Synthetic Images: 4 AU, 30 microns

- At 100 pc,
 - need mas resolution
 - planet is 40 mas from the star
- Unlikely to be observable
- A gap may be resolvable (large planet)

Observability

- At 100 pc,
 - need mas resolution
 - planet is 40 mas from the star
- Unlikely to be observable
- A gap may be resolvable (large planet)

http://www.eso.org/projects/alma/science

Effects on Planet Formation

- May not be observable, but can affect:
 - Ice Formation
 - Planetary Migration

Ice Formation

- The snow "line" (170 K) in a 1-D disk occurs at 2.7 AU (Hayashi 1981)
- Model disk:
 - Snow transition begins at 0.6 AU
 - Midplane 1.3 AU
 - Surface 3.3 AU

Ice sublimates at 170 K (solid contour)

Define a **hot** (cold) spot as a region that is **above** (below) 170K where it would normally be **below** (above) 170K

Implications for Planet Growth

- Moving the snow line
 - Ice may be able to condense closer to the star than previously expected
- Cold and Hot spots
 - Condensation/sublimation of ice
 - Enhancement/decrement in abundance of solids
 - Increase/decrease in accretion rate
 - Increase/decrease in volatile fraction

Type I Migration

- Balance of tidal torques depends on pressure gradient in the disk
- A local inversion of the temperature gradient due to shadowing and illumination effects may slow or reverse inward migration

Migration Rates

Jang-Condell & Sasselov 2005

- Type I migration rates are sensitive to changes in the pressure gradient
- Local temperature inversion slows migration
- Up to a factor of 2 increase in migration timescale

Summary

- Temperatures near a protoplanet are sensitive to shadowing/illumination. This affects:
- Growth of protoplanets
 - Composition of disk material accreted
 - Rate of growth
- Planet migration rates
 - Can slow Type I migration

Future Prospects

- Varying parameters:
 - 1 M_{sun} -- Planet formation in Solar System
- Observable signatures of shadowing/illumination
 - Distinguishing planets, clumps
- Modelling disks with inner holes or gaps
 - Hot inner walls, self-shadowing
- Numerical simulations
 - Non-linear effects
 - Feedback, self-consistency

Neglected Physics

- Dynamical interactions
- Accretion onto the planet
- Non-linear effects (i.e. density waves, gapopening)
- Self-consistency -- response of density to temperature
- RT between hot/cold spots