

Observations and models of dust stratification in T Tauri circumstellar disks

Gaspard Duchêne (Grenoble)

C. Pinte, F. Ménard (Grenoble), C. McCabe, K. Stapelfeldt (JPL), A. Ghez (UCLA)

Disk stratification

• Dust grains are expected to grow by coagulation and to settle by gravity

Disks should have a stratified structure

- Physical models predict extremely short timescales (<10⁵ yrs) for both phenomena
 - Disks around 10⁶ yr-old T Tauri stars could already show evidence for these effects

The search for stratified disks is on !

Indirect evidence so far

- SED analyses suggest both growth and settling, though with ambiguities and/or uncertain free parameters
- Silicate emission and optical scattered light reveal small grains in surface whereas radio thermal emission suggests large grains in the disk midplane

Quantitative analyses are difficult

Multi- λ scattered light images

- Dust opacity decreases with increasing λ
 - Images in the thermal IR probe deeper into the disks than optical/NIR images
- Scattering depends on grain size and λ , and is most sensitive to $2\pi a \approx \lambda$ grains
 - Optical/NIR \Leftrightarrow 0.1-0.5 μ m dust grains
 - Thermal IR \Leftrightarrow 1-5 μ m dust grains
 - A powerful tool to probe stratification

Scattered light models

- Images must be quantitatively compared to numerical simulations
- We use a Monte Carlo code that includes a dust grain size distribution
 - It now includes a parametrized stratification of dust grains, with $H_0(a) \propto a^{\eta}$
 - Set-up to run thousands of models at several wavelengths for simultaneous multi- λ fit

The case of GG Tau

- A $0.13M_{\odot}$, 180AU-radius circumbinary ring
- We have obtained the first thermal-IR image
 - Clear detection of the ring in scattered light
 - Morphology extremely similar to visible image

ISM dust models match the visible Image with i ≈ 40°

The case of GG Tau

- Interstellar-like, submicron grains would produce a dramatically different image
 - Clearly shows the presence of a substantial amount of grains with radius beyond $1\mu m$
- However, it is virtually impossible to find a single size distribution for the entire disk
 - No high-polarization, λ -independent scattering
 - Evidence for disk stratification?

A first direct evidence

- Scattered light at L' comes from 25AU above the midplane; I band, 50AU above
- Arguably the most direct evidence of dust stratification to date
 - Settling and/or growth?

The case of HK Tau B

- 105AU-radius optically thick edge-on disk
 mm emission suggests layered structure
- IR images reveal an increasingly forwardscattering morphology at longer wavelengths

It could be stratification ...

- Supra-µm grains are needed (deeper)
- Monte Carlo simulations with stratification provide a decent fit to all images
 - But it's not a perfect fit (e.g., low contrast)

... but it's not clear yet

- Fitting the images without stratification yields only slightly poorer results
 - Still an open question for this object
 - Edge-on disks may not be the best test-cases

Summary

- Stratification is predicted by models but not directly evidenced by SED studies
- Scattered light images can yield such direct evidence (see the case of GG Tau)
- Ultimately, the combination of scattered light images and SED will be critical

Quantitative tests of growth and settling models

