



# **MIRI Detectors**



Mike Ressler, MIRI Project Scientist

March 11, 2014

The data/information contained herein has been reviewed and approved for release on the basis that this document contains no U.S. export-controlled information.

JWST Transit Planning Meeting

March 11, 2014

M. Ressler

MIRI



## **Detector Functionality**









- MIRI arrays are the direct descendants of the long wavelength IRAC arrays
  - Same four science outputs and interleaving
  - Same readout procession
  - Same fundamental noise/power performance
  - Similar detector layer recipes
- Chief differences
  - Larger format,  $1024^2$  vs  $256^2$
  - Smaller pixel size, 25 μm vs 30 μm
  - Added reference pixels and output
  - Added odd/even row circuitry

MIRI





MIR

JWST Transit Planning Meeting



### Readout and Subarray Schematic



JPL





**MIRI Readout: SCA View** 



Samples/pixel = 1 or 10 (Fastmode vs Slowmode) Frames = Groups for MIRI Frames/Integration = 1 to 65535 (limited by CR hits to ~ 1000 sec) Ints/Exposure = 1 to 65535





- Frame time depends on number of pixels read plus overhead
  - With current electronics and definitions, approximately:

- RowStart +1) \* (ColStop +3) \* 10 µs +0.072 sec (RowStop

With new electronics and burst mode, assuming it works well:

<sup>–</sup> RowStart (RowStop

<sup>+</sup>1) \* (ColStop - ColStart <sup>+</sup> 4 <sup>+</sup> ColStart //5) \* 10 µs <sup>+</sup> 0.072 sec

| Subarray      | Size<br>Columns<br>by Rows | Start Pos | FAST<br>Frame<br>Time | Max Flux F560W<br>[mJy]    | Max Flux F2550W<br>[mJy] | * Only BRIGH<br>and SUB256 v<br>gain from burs |
|---------------|----------------------------|-----------|-----------------------|----------------------------|--------------------------|------------------------------------------------|
| FULL          | 1032x1024                  | (1,1)     | 2.775                 | 17                         | 360                      |                                                |
| BRIGHTSKY*    | 968x512                    | (1,37)    | 1.326                 | 34                         | 780                      |                                                |
| SUB256*       | 668x256                    | (1,37)    | 0.507                 | 90                         | 2150                     |                                                |
| SUB128        | 136x128                    | (1,889)   | 0.119                 | 370                        | 8400                     |                                                |
| SUB64         | 72x64                      | (1,779)   | 0.085                 | 520                        | 12000                    |                                                |
| SLITLESSPRISM | 72x416                     | (1,529)   | 0.159                 | 3000 using P750L at 7.5 μm |                          | - If it is success                             |
| MASK1065      | 288x224                    | (1,19)    | 0.240                 |                            |                          |                                                |
| MASK1140      | 288x224                    | (1,245)   | 0.240                 |                            |                          |                                                |
| MASK1550      | 288x240                    | (1,467)   | 0.252                 |                            |                          | -                                              |
| MASKLYOT      | 320x308                    | (1,715)   | 0.327                 |                            |                          |                                                |

ITSKY vill t mode ul





- Integration time is an integer multiple of frame time
  - No gaps or pauses between frames
- Exposure time is an integer multiple of integrations plus any intermediate reset frames (currently 0)
  - No gaps or pauses between ints/frames
- Timing within an exposure is completely deterministic and very well determined
- Between exposures is not controlled and is dependent on latency in the IC&DH system
  - We never do a partial frame read next exposure start is forced to wait for a frame boundary
  - Time tagging should still be good enough to determine precise time gap



# **Detector Peculiarities**

(Some figures shamelessly stolen from James Colbert, Dan Dicken, and Tom Greene)







- MIRI detectors operate well below silicon freezeout
- The fabrication processes of both the detector layer and the readout address this, but it is impossible to completely get around it







- George Rieke has compiled a list of MIRI's most significant calibration-related misbehaviors:
  - 1. Nonlinearity (much progress has been made)
  - 2. Reset zero point drift (issue for nonlinearity correction)
  - 3. Response drifts during exposure (most serious bad habit)
  - 4. Reset anomaly (much progress has been made)
  - 5. Latent images
  - 6. Cosmic ray effects and anneal recovery
  - 7. Settling time after powering up
  - 8. Settling when changing operational mode (e.g. full to subarray)
  - 9. Last frame effect (good understanding, correction not clear)
  - 10. Extraneous signals from the readout: "MUX glow"
  - 11. Readout electronics slew rate limitations (electronic crosstalk, eliminated)
  - 12. Avalanche gain (much progress has been made)

\* Effects with significant impact on exoplanet science highlighted in red







• Constant illumination source, repeated single-int exposures for 4 hours



# 3. Drifts In Apparent Response



- Constant illumination source, repeated single-int exposures 9 hours, 5 minute pause between each block of 4 exposures
- Effect at the fraction of a percent level; under very active investigation



### 4. Reset Anomaly



Odd rows



- "Left-overs" from previous resetting process contaminate beginning of subsequent integration
- Not flux dependent, can be corrected with information extracted from darks
  - Some flux dependence in multiple ints within an exposure see latents

M. Ressler





VIIR



- Seen as "traditional" latents in subsequent exposures (after fitting slopes)
- Also seen as effects on a frame-by-frame basis



# 5. Persistence Recovery





- "Low temperature" anneal may restore latent-free imaging in < <sup>1</sup>/<sub>2</sub> hr
- SNR performance is restored faster than the DC background
  - i.e. not a shot noise process



### All the Usual Weird Stuff





#### Tree rings + short-wavelength cross



Column pull-down around shorted pixels



Cosmic ray strike in readout rather than detector



Bright source pull-down/up

JWST Transit Planning Meeting



#### Power-on settling

M. Ressler

March 11, 2014

10345 2 SW - FAST, 3I x 100F

#### Readout glow

MIRI - 17





- The subarrays themselves leave their own latents!
- As a result, 20 min (TBC) of settling time are required when changing readout modes (#8 of the bad habits)
- Recall that the overhead limits the utility of small subarrays
- Punchline: avoid using subarrays unless required to achieve your science







- The MIRI detectors are very sensitive and very good cosmetically
- The horror show I just presented is the 1% stuff
- Extensive calibration efforts are ongoing and will continue throughout flight operations
- Continue to use the Spitzer/IRAC experience to estimate the likely experience with MIRI

